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CHAPTER 1. GENERAL INTRODUCTION 

1.1 Introduction 

The main goal of this dissertation is to explore the role played by private information in 

different markets. There are two main classes of imperfect information models that provide 

testable predictions for empirical work. The first, adverse selection, assumes that economic 

agents possess information about their characteristics not observed by other market partic­

ipants. These characteristics directly affect both agents' own decisions and relevant market 

outcomes. For example, high risk people tend to choose insurance policies with low deductibles 

and coinsurance rates. At the same time, these people get in accidents more often. The second 

model, moral hazard, assumes that economic agents have incentives to behave differently when 

their actions are unobservable. For example, insured individuals tend to devote less effort to 

various preventive activities and by doing so they increase their own risk. 

Both adverse selection and moral hazard predict that there should be positive correlation 

between some choice variable (insurance coverage) and some outcome variable (risk). Although 

the prediction of both of these models is the same, the mechanisms that generate it are different. 

In adverse selection models, agents know their risk and choose insurance coverage. In moral 

hazard models, agents change their own risk depending on the coverage they have. The welfare 

implications of these two asymmetric information problems and the ways to solve them are 

different. For example, mandatory insurance would solve the adverse selection problem but it 

would exacerbate the moral hazard problem. It is, therefore, important to empirically separate 

their effects. 
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1.2 Thesis Organization 

In this dissertation, I concentrate on two broad areas: health insurance and business fi­

nancing. The dissertation consists of three essays. The first two papers are empirical and 

use similar endogenous treatment models. They are estimated using Markov Chain Monte 

Carlo methods. In the third essay, I develop and simulate a structural job search model to 

illustrate the role played by unobserved preferences for health insurance and by availability of 

employer-provided insurance coverage. 

In the first essay, I explore the multidimensional nature of imperfect information in health 

insurance markets. Empirical research has traditionally concentrated on testing for positive 

correlation between coverage and risk predicted by standard moral hazard and adverse selection 

models. Recent theoretical advances demonstrate that the lack of such correlation does not 

signal the absence of informational asymmetries and is consistent with more complex models 

with unobserved risk-aversion. I extend the empirical literature by testing for selection on more 

than one type of latent information - risk type and risk-aversion type. In order to separate 

an incentive (moral hazard) effect from effects of selection on multiple types of unobservables, 

I specify a hybrid endogenous treatment model with explicit modeling of indicators of latent 

attitudes toward risk-taking behavior. I use data from the 2000 Medical Expenditure Panel 

Survey (MEPS), which contains a set of attitudinal variables necessary to estimate the model. 

Although the overall selection effect appears to be insignificant, the results indicate that indi­

viduals do, in fact, possess private information which increases their propensity to be insured 

and to utilize health care. This suggests that lack of conditional correlation between insurance 

coverage and health care utilization results from informational asymmetries of multiple types 

inducing selection in opposite directions. In addition, I find strong evidence of moral hazard 

in outpatient and office-based health care utilization but not in inpatient or emergency room 

utilization. 

The second essay (joint with Olena Chyruk) is the first paper to examine the relationship 

between capital structure and performance of business start-ups in the presence of imperfect 

information. Economic theory identifies two potential informational problems that affect the 
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trade-off between inside and outside financing. On the one hand, firms may self select into 

certain capital structures. For example, they may choose higher leverage based on favorable 

expected future prospects to avoid sharing the returns with outside equity holders. On the other 

hand, capital structure may affect the performance because of moral hazard. For example, 

outside equity dilutes ownership, and this decreases the entrepreneur's incentives to work. The 

goal of this essay is to investigate which effect (selection or incentive) dominates in the data. 

Capital structure and performance of business start-ups are estimated jointly using a unique 

data set collected by the National Federation of Independent Business (NFIB) Foundation. 

The results suggest that debt does not have a significant incentive effect on performance in 

business start-ups after controlling for self-selection. In contrast, both selection and incentive 

effects are present in the case of outside equity indicating that outside investors are able to 

both overcome informational opaqueness of business start-ups and provide better incentives 

for performance. 

The third essay examines the role of unobserved preferences for health insurance in the 

context of job search. The majority of Americans get health insurance through their employers. 

One of the potential concerns related to employer-provided health insurance is whether some 

categories of workers (typically with low educational attainment) actually have access to jobs 

with health insurance offers. This challenges an assumption imposed in some of the previous 

literature that workers have equal access to both jobs with and without health insurance offers 

and sort strategically according to their preferences. A worker can be uninsured either because 

of lack of choice or because of preferences for a job without a health insurance offer. To be able 

to separate the effect of lack of choice from the effect of preferences, I develop a structural job 

search model with two job characteristics - the offered wage and the availability of insurance. 

I simulate the model to demonstrate the interaction between preferences and availability of 

choice. 
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CHAPTER 2. SELECTION AND INCENTIVE EFFECTS OF HEALTH 

INSURANCE IN THE PRESENCE OF RISK AVERSION 

A paper to be submitted to The Journal of Applied Econometrics 

Dzmitry Asinski 

Abstract 

This paper provides new evidence on the existence and nature of imperfect information in 

health insurance markets that has important implications for assessing market-based health 

care reform proposals. Empirical research has traditionally concentrated on testing for positive 

correlation between coverage and risk predicted by standard moral hazard and adverse selection 

models. Recent theoretical advances demonstrate that the lack of such correlation does not 

signal the absence of informational asymmetries and is consistent with more complex models 

with unobserved risk-aversion. I extend the empirical literature by testing for selection on more 

than one type of latent information - risk type and risk-aversion type. In order to separate 

an incentive (moral hazard) effect from effects of selection on multiple types of unobservables, 

I specify a hybrid endogenous treatment model with explicit modeling of indicators of latent 

attitudes toward risk-taking behavior. The model is estimated using Markov Chain Monte 

Carlo (MCMC) methods. I use data from the 2000 Medical Expenditure Panel Survey (MEPS), 

which contains a set of attitudinal variables necessary to estimate the model. Although the 

overall selection effect appears to be insignificant, the results indicate that individuals do, in 

fact, possess private information which increases their propensity to be insured and to utilize 

health care. This suggests that lack of conditional correlation between insurance coverage 

and health care utilization results from informational asymmetries of multiple types inducing 

selection in opposite directions. In addition, I find strong evidence of moral hazard in outpatient 
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and office-based health care utilization but not in inpatient or emergency room utilization. 

2.1 Introduction 

The problem of asymmetric information in insurance markets is of considerable interest 

from both theoretical and policy perspectives. The informational problems related to health 

insurance (or lack thereof) have been on the leading edge of public interest because of concerns 

over access to care by the uninsured and rapidly rising medical care costs. It is well-known that 

adverse selection can potentially completely destroy the market or leave a very large portion 

of the population uninsured (Rothschild and Stiglitz (1976)). The other major type of market 

failure, moral hazard, leads to inefficiently high consumption and is often credited as one of 

the engines of the fast growth of medical care costs in recent decades. In addition, the extent 

and nature of asymmetric information in health insurance markets has important implications 

for evaluating various market-based health care reform proposals. 

The main goal of this paper is to test for existence of multiple types of private information 

in health insurance markets. I show that asymmetric information does exist and that it is 

multidimensional. Moreover, failure to account for the multidimensional nature of private 

information may lead to the erroneous conclusion that there are no informational asymmetries. 

The empirical literature addressing informational asymmetries in insurance markets has 

traditionally been focused on testing for positive correlation, conditional on observables, be­

tween coverage and risk predicted by standard adverse selection and moral hazard models. 

Adverse selection, on the one hand, predicts that (unobservably) riskier individuals should be 

more likely to self-select into better coverage. Moral hazard, on the other hand, predicts that 

individuals with better coverage take fewer precautions because of the reduced penalties for 

risky behavior thereby increasing their risk level. Both types of informational asymmetries can 

cause positive correlation between coverage and risk in the data, yet the direction of causality 

is different. The empirical evidence on the existence of such correlation in health care and 

health insurance markets, especially coming from adverse selection, is not overwhelming.1 A 

'The sizeable empirical literature attempting to test for asymmetric information and to separate effects of 
moral hazard and adverse selection produced diverse results with two important messages emerging from it 
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possible explanation for the absence of positive correlation between risk and coverage in some 

studies is provided by recent theoretical advances in contract theory. In particular, more com­

plex asymmetric information models that include unobserved risk-aversion do not generally 

produce the positive correlation prediction generated by simpler theoretical models.2 

The innovation of this paper is to consider two distinct types of selection in the context 

of health insurance: selection based on the latent risk type and selection based on the latent 

risk-aversion type. The distinction between these two types of private information is crucial 

because the selection on risk-aversion type can generate negative correlation between coverage 

and risk. Relatively more risk-averse individuals may have higher incentives to select better 

coverage because they have higher demand for consumption smoothing provided by insurance. 

At the same time, more risk-averse individuals may choose to be more cautious and to be 

more actively engaged in prevention activities, which, in turn, reduces risk. In other words, 

individuals with higher risk-aversion have higher disutility from both negative health and 

negative income shocks, which induces them to insure in all available ways - buying (costly) 

insurance or engaging in (costly) prevention activities. Models that do not consider such 

type of selection in addition to the traditional selection on the risk type may erroneously 

imply that the lack of correlation between coverage and risk signals the lack of asymmetric 

information (this possibility was pointed out by Finkelstein and McGarry (2003) and Gardiol et 

al. (2003)). Testing for selection on multiple types of private information has implications for 

assessing health care reform proposals that emphasize consumer choice and competition among 

insurers. Instead of offsetting each other's effects, different dimensions of private information 

together with increased competition among insurers may lead to further segmentation of the 

population. Yet, despite the availability of theoretical literature incorporating both types of 

- the choice of control variables and the population under consideration matter. For example, Cardon and 
Hendel (2001), Coulson and Stuart (1995), Dionne et al. (1998), Dionne et al. (2003), Dowd et al. (1991) find 
no evidence of adverse selection in different insurance markets after properly accounting for risk classification. 
Bradley (2002), Deb and Trivedi (2004), Ettner (1997), Holly et al. (1998), Hurd and McGarry (1997) do find 
such evidence. 

2Indeed, Chiappori et al. (2002) demonstrate that positive correlation between risk and coverage persists 
when the basic adverse selection model of Rothschild and Stiglitz (1976) is extended to more general envi­
ronments. In particular, a model with both adverse selection and moral hazard has this property. There 
are, however, two important dimensions in which the positive correlation property generally does not extend: 
non-competitive environments and unobserved risk-aversion. 
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selection,3 applied work has generally been hindered by the lack of data allowing researchers 

to separate different types of private information. Finkelstein and McGarry's study of long-

term care insurance markets is the only study I am aware of that tests and finds evidence of 

different types of asymmetric information. They use an individual's subjective evaluation of 

the probability of using a nursing home within the next five years to show that, controlling 

for observables, it is a significant predictor of future nursing home use. In addition, the 

preventive care measures are found to be negatively correlated with subsequent nursing home 

use and positively correlated with the propensity to have long-term care insurance. The authors 

argue that these two types of private information cancel each other to produce an insignificant 

estimate of the overall selection effect.4 

I follow Gardiol et al. (2003) in calling the two main effects of interest the selection 

effect and the incentive effect. The selection effect occurs if individuals select into different 

insurance states (plans) based on private information. The presence of the selection effect is a 

necessary but not sufficient condition for adverse selection in the market.5 The incentive effect 

is comprised of ex-ante moral hazard and ex-post moral hazard. The former effect is present if 

the probability of experiencing an adverse health event (sickness) is increased because of the 

reduced benefits from engaging in preventive activities. The latter effect appears because the 

insured individuals face a greatly reduced price of health care.6 

In order to test for the presence of multiple sources of private information, I extend the 

standard two-equation endogenous treatment model along the lines of the general discrete 

choice model of Walker and Ben-Akiva (2002) by explicitly modeling indicators of latent risk-

3See, for example, Araujo and Moreira (2001), de Meza and Webb (2001). 
4It is also interesting to note that Meer and Rosen (2004) estimate the demand for health care using instru­

mental variables (IV) techniques to control for potential endogeneity of health insurance status. Their main 
contribution to the literature is to introduce a new instrument - self-employment status. They find that after 
accounting for endogeneity, health insurance status is still an important predictor of health care utilization. 
What is more interesting is that compared to un-instrumented estimates, the IV estimates are larger. One 
possible explanation is that self-employed individuals are more likely to be more risk-loving than the general 
populace. It suggests that this particular instrument may control for some part of risk-aversion. 

5The adverse selection is an equilibrium concept, and I only model individual behavior in this paper. Nev­
ertheless, the term is often used in the applied literature to denote selection. 

6It is also worth noting that from a theoretical standpoint, the classical moral hazard model requires some 
unobservable action by an agent which directly influences the outcome of interest. For example, an agent's 
engagement in preventive activities is unobserved, and these preventive activities can directly influence health 
status and health care expenditures. 
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aversion. The resulting hybrid model includes the endogenous treatment system and a latent 

variable measurement equation. The endogenous treatment model has been used extensively 

in the literature to separate the effects of moral hazard and adverse selection system, and it 

consists of an outcome equation (health care utilization, which serves as a proxy for risk) and 

a treatment (insurance coverage) equation. I estimate the resulting system of equations jointly 

using Markov Chain Monte Carlo (MCMC) methods. The choice of methodology is strongly 

motivated by the computational advantages of Bayesian methods over classical procedures in 

related models (see Munkin and Trivedi (2003)). 

In this paper I use a unique set of variables available in the Medical Expenditure Panel 

Survey (MEPS) that measure individual responses to a series of questions about risk-taking 

behavior in general and attitudes toward health insurance in particular.7 I assume that these 

self-reported attitudes measure one dimension of private information available to the individ­

uals - latent risk-aversion. One of the goals of this paper is to provide additional insights into 

what responses to these attitudinal questions actually convey in the context of medical care 

utilization and health insurance choice. The importance of such insights for future research is 

underlined by the resurgence of interest in the role played by individual preferences in making 

decisions related to health insurance.8 

I use binary indicators for both medical care utilization and health insurance status. The 

most important advantage of the binary utilization and insurance variables is that they lend 

themselves naturally to the analysis of disparities in access to care by the insured and unin­

sured.9 A multinomial variable reflecting the choice of a contract from an available menu is 

an often used alternative. Unfortunately, the MEPS dataset I use does not contain reliable 

information on the actual menus that people face.10 Furthermore, studies analyzing the choice 

of a contract from an available menu typically restrict their samples to employed individuals 

7The MEPS variables used in this paper first appeared in 2000. The precursor to the MEPS - the 1987 
National Medical Expenditure Survey (NMES) - also contained these variables. 

8For example, Monheit and Vistnes (2004) show that self-reported attitudes toward health insurance play 
an important role in job search. 

9In addition, there is no consensus in the literature as to which continuous measure of health care utilization 
better reflects the demand for health care. 

10In fact, there is a restricted-use file in the MEPS containing information on the actual menu of contracts 
facing each employed individual. Unfortunately, a very high non-response rate renders these data unusable for 
the purposes of this paper. 
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with offers of multiple contracts, which affects the generality of their results. 

The estimates of the model indicate that there is no selection on unobservables in my 

sample. At the same time, the latent information measured by the attitudinal questions in 

my data significantly affects both health insurance and utilization decisions. The lack of an 

estimated overall selection effect combined with the presence of private information affecting 

both decisions suggests that there must be other distinct types of private information inducing 

selection in the opposite direction. Therefore, the lack of an overall selection effect does not 

signal the absence of informational asymmetries in my sample. Instead, it signals the presence 

of multiple types of private information that act in opposite directions to cancel out. In 

addition, I find a strong incentive effect (moral hazard) of being insured on the access to 

outpatient and office-based care. Consistent with the previous literature, I do not find any 

significant incentive effect on access to emergency room or inpatient utilization. 

The paper proceeds as follows. Section 2.2 outlines the econometric model and estimation 

details, Section 2.3 discusses the data, Section 2.4 provides results, and Section 2.5 concludes. 

2.2 The Model 

2.2.1 General Outline 

Individuals make two choices in the model: whether to be insured and whether to utilize 

medical care. The two decisions can be thought of as corresponding to two distinct stages of 

decision making. In the first stage, individuals observe a private signal about their expected 

future health care needs and choose an insurance option according to this expectation. In the 

second stage, health care needs are realized and, conditional on chosen insurance status, the 

medical care decision is made. The important feature of the decision making process is the fact 

that the propensity to consume health care, which would obviously influence both the health 

insurance decision and the medical care consumption decision, is unobserved. 

Both the selection and the incentive effects are expected to generate positive correlation 

between the presence of health insurance and health care utilization conditional on observables. 

The direction of causality is very different, however, for the two effects. The selection effect 
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induces people who expect to be relatively heavy users of medical care to select into the 

insured status. The incentive effect induces insured individuals to consume more health care, 

conditional on their health status, because they face a reduced price. 

With i indexing individuals, I denote by U* and HI* the latent indexes (utilities) governing 

the choice of health care utilization and the choice of health insurance status, respectively. The 

binary observed outcome variables Ui and HIi are obtained from the latent indexes associated 

with each choice in the following manner: 

Ui = m > o] 

HIi = 1 [HI? > 0], (2.1) 

where 1 [.] is an indicator function. 

I then introduce two latent factors reflecting risk type and risk-aversion type of individual 

i and denote them by R* and RL*, respectively. I assume that higher RL* reflects lower 

risk-aversion (higher risk-loving).11 Key to this model, I also observe an indicator of the latent 

risk-loving denoted by RLi, that is obtained from the latent index RL* as 

RLi = 1 [RL*i > 0]. (2.2) 

The latent utilities governing the two decisions in the model are assumed to be equal to:12 

U* = Xi&i + "fHIi + ai R* + £i RL* + en 

HII = x$ 2 + ZiV + Q2-R* + Ç2 RL* + £2 i, (2.3) 

where is a vector of exogenous variables; z* is a vector of instruments;13 6\ and 62 are vectors 

11 This reflects the way risk-aversion is measured in my data. 
12Note that this structure explicitly imposes the restriction that the two types of private information are 

independent. Given that I only have data on risk-aversion, I can only identify the additive effects. To model 
interactions between different types of private information one would need data on all of them. 

^Identification of the parameter 7 in a model with only two binary equations cannot be achieved through 
non-linearity of the treatment (health insurance) equation alone and exclusion restrictions would be required (see 
Maddala (1986)). Since my model includes the third equation, the identification by non-linear form is possible. 
Nevertheless, I include a vector of instruments % for more robust identification. I discuss identification of the 
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of parameters, ai, «2, (i, (2, ^ and 7 are scalar parameters; the error terms en, e<i* are assumed 

to be independently and identically distributed ~ N (0, cre); the latent risk type R* is assumed 

to have standard normal distribution. Finally, I assume that the latent risk aversion RL* is 

determined as follows 

RL* = XiS + r)i, (2.4) 

where is the vector of exogenous variables; 5 is a scalar parameter; and the error term 

r]i is assumed to have a standard normal distribution. Note that although the errors en, % 

are uncorrelated, the problem of endogeneity of insurance choice still remains because of the 

presence of latent variables R* and RL*. Substituting the expression for the latent risk aversion 

RL* into (2.3) I obtain the three equation system: 

U* = Xi(3i + -yHIi + a\R* + (1% + en 

HI* = Xifc + ZiV + Q2-R* + (27), + en 

RL* — XiS + r]i, (2.5) 

where Pi = fh = 62+(25 are the identified reduced-form coefficients on the observables 

in the first two equations of the model. 

The vector of error terms of the system (2.5) is given by £j = (eii,£2i,£'3i)', where en — 

aiR* + (iTji + en, — »2R* + (2% + en, £•& = %. The error covariance matrix E is equal to 

^ ai + Ci + otiot2 + C1C2 Ci ^ 

£ = 0:10:2+0C2 «2+(2 + (2 

v  Ci (2 / 

^ 1 Pl2 Pl3 ^ 

Pi2 1 P23 

Pi3 P23 1 J 

(2.6) 

where I normalize the scale of all three equations to 1 by setting c*î + (1 + a\ = 1 and 

«2 + (2 + at — 1- The signs of covariance terms of the error covariance matrix are very 

important for this analysis, and they are unaffected by these scale normalizations. 

model in more detail later. 
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Without loss of generality, I assume that higher values of R* reflect higher risk as measured 

by the higher expected probability of utilizing any medical care. I therefore expect ai > 0. 

The standard selection on unobservables hypothesis states that 0.1 > 0 because individuals 

with greater propensity to utilize health care are more likely to select into the insured state. 

It then follows that aiog > 0. In the absence of any other types of private information; i.e., 

ru = 0, I expect to observe positive correlation between health care utilization and insurance 

status conditional on observables; i.e., pn = oiog > 0-

If latent risk-aversion is an important factor in decision making, the two-equation endoge­

nous treatment model can lead to incorrect conclusions about the existence of imperfect infor­

mation. Without loss of generality, I assume that higher values of rji reflect lower risk-aversion 

(higher RL*). Then the theory predicts that £1 > 0 because more risk-loving individuals 

(higher 7%) will be less cautious and will be less actively engaged in prevention activities, 

thereby worsening health status and increasing the probability of using health care.14 At the 

same time, more risk-loving individuals are less likely to be insured, i.e. (2 < 0. It then follows 

that Ç1C2 < 0, which in turn implies that sign{p\2) = sign(a\a2 + (1C2) is ambiguous. More 

specifically, the estimate of p\2 = 010:2 + (1(2 can be very close to zero, implying that there is 

no private information and no selection effects. However, a conclusion based on sign(pu) alone 

could clearly be erroneous as there is, in fact, private information (0:10:2 > 0 and (1(2 < 0) of 

two different kinds that induce selection in the opposite directions. 

The inclusion of an observed index of latent risk-aversion allows me to distinguish between 

two very different scenarios: (1) no private information and (2) private information of multiple 

types.15 This can be achieved by combining the information on the estimate of pi? with 

information on the estimates of p\z and #3 Given the theoretical prediction discussed above, 

14It is also conceivable that more risk averse individuals will be more likely to use health care because much 
of what we call prevention consists of frequent visits to a doctor to perform various check-ups. In this paper 
I consider various measures of health care utilization to try to distinguish between different possible effects of 
risk aversion on health care utilization. 

15As a matter of practical implementation, it is not clear that the attitudinal questions used in this paper 
actually do measure risk aversion type and not, say, risk type or some combination of risk type and risk aversion 
type. Still, the important message of my argument is that the attitudinal questions do measure some facet 
of a potentially multifaceted private information set. By comparing correlations it is possible to reach certain 
conclusions about the presence of imperfect information of multiple types and also gain insights into what these 
questions are asking. 
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I should obtain sign(pis) = szgn((i) = + and signez) = signfa) — —• If the estimate of pn 

is insignificant but the estimates of both pu and P23 are significantly different from zero, I will 

conclude that there is private information instead of reporting no informational asymmetries. 

The next subsection will outline estimation of the identified system of reduced-form equa­

tions given by16 

U* = Xi/31 + 7/f/i + en 

HI* = XiP2 + ZiV + £2i 

RL* = Xiô + £3 i. (2.7) 

The parameter 7 measures the incentive effect of having health insurance on the probability of 

utilizing any health care. The correlations between the error terms of the three equations are 

designed to capture the unobserved private information about the latent risk type and risk-

aversion type. The theoretical predictions of the signs of the error correlation matrix elements 

are as follows: 

S = 

1 1 +? + ^ 

+? 1 -

+ - 1 

(2.8) 

2.2.2 Estimation Details 

2.2.2.1 Derivation of the Posterior Distribution 

I use Bayesian methods to fit the model defined by 2.1, 2.2, and 2.7. The joint posterior 

distribution of the parameters of the model has to be simulated because it does not have a 

convenient analytical form. The parameter set is split into blocks and a variant of Gibbs 

sampling algorithm (see, for example, Tierney (1994)) is used to iteratively draw values from 

posterior distribution of each block of parameters conditional on other parameters of the model. 

16An alternative approach would be to model the choice of insurance status and the choice of health care 
utilization with added explanatory variable RLi. The coefficients on the latter would tell how observed indicators 
of latent factors affect the insurance status and the health care utilization decisions. However, such an approach 
ignores the potential endogeneity of self-reported indicators to the actual decisions made. It also ignores the 
potentially continuous nature of the latent risk-aversion index. 
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The posterior output of this Markov Chain is used to make inferences about the parameters 

of the interest. Because the conditional posterior distribution of error correlations is not of a 

standard form, a tailored Metropolis-Hastings algorithm is used to sample from it (Metropolis 

et al. (1953), Hastings (1970)). Lastly, I follow Albert and Chib (1993) by augmenting the 

parameter set with the latent data. The three equations for each individual are stacked in the 

following manner 

Vi = 

/ [/, \ 

Hit i Vi — HL > — 

X RLi } 3x1 

Xi 

Xi HIi 0 0 0 

0 0 Xi Zi 0 

0 0 0 0 Xi 

, and S3 — 

3xfc 

£2 i 

V E = " / , x l  

7 

A 

V 

\5 n xl 

where k is the total number of explanatory variables in all three equations. The system can 

then be expressed as 

Vi = XiP + d 

£ i  ~  N  ( 0 ,  E ) .  

The observations are then stacked together as 

y  =  2/2 , y  =  V2 = 

3nxl 
\ xn J 

, £  =  

3 n x k  

£2 

\en J 
3nxl 
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to produce 

y* = X P + e 

(2.9) 

For computational simplicity, I follow Albert and Chib (1993) and treat the latent data 

y* as additional parameters of the model. The augmented posterior p (y*, /?, E| y), which also 

contains the latent data, is proportional to 

p{y*,P,Z\ y) ctp{y\y*,(3, E)p(y*|/3,E)p(,S, E) 

n 

oc P { P ,  s) p (yi \y* )  p  {y*\ /3 ,  E) 
1=1 

n 

oc p (/3, S) J] 1 [Ui = 1 [Ui > 0]] 1 [HIi = 1 [HIi > 0]] x 

1 [RLi - 1 [RL* > 0]]p (j/*|/3, E), (2.10) 

where the second line follows from the assumed independence across individuals. Conditional 

on the parameters of the model, the augmented likelihood can be expressed as17 

p(y'lAZ) = (27T)-T|A, 8 Z|-5 exp(-^(y" - <9 Z)-i(%' - ̂ )) 

oc |2|-7exp(-^(i/; -%^)). (2.11) 
i=1 

I place the following independent Normal prior distribution on /318 

P ~ N(fi0o,Vpo), (2.12) 

where fi@o and Vgo denote the prior mean and covariance matrix of p. Because identification 

requires the use of the normalized covariance matrix E, priors are placed directly on the 

17Please refer to appendix for the details of derivations. 
18I use proper priors for all parameters. The exact hyperparameters used in estimation are given in the next 

subsection. 
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identified correlation parameters P12, Pi3, and P23, and are chosen to ensure that E is positive 

definite with probability 1. Specifically, 

P12 ~ U N I F  (—1,1) 

p\z ~ UNIF (-1,1) (2.13) 

Z>23|pi2, P13 ~ U N I F  ( p l 2 p i 3  -  a/(! — P12X1 — P13)» P12P13 + ^(1 ~ Pl2)(1 ~ Pl3^ • 

2.2.2.2 Posterior Simulation 

The conditional posteriors of both /? and E are proportional to the product of likelihood 

and the respective prior distribution. It turns out that the conditional posterior for (3 is also 

Normal:19 

P (/%*,£) ~ N (M/31, Vpi) 

1=1 

n 

(214) 
i=i 

The conditional posterior distribution of (/>i2,Pi3,P23) is given by 

P(P12,P13,P23|!/*,/?) oc |E| 2 exp ^ (y* - Xi/3)'E 1(y* - Xi(3))-> 
i=1 

1 

VU ~ Pl2)(1 - P13) FT (2.15) 

This distribution does not take any convenient standard form. To sample from (2.15), I employ 

a Metropolis-Hastings (MH) step within Gibbs algorithm. I choose the proposal density to be 

Normal centered at the sample correlation of errors, which are "known" given /3 and y*. The 

variance of the proposal density is chosen so that the acceptance rate is approximately 35%.20 

Finally, the data augmentation step draws the values of latent variables U*. HI*, and RL* 

1BThe reader is referred to appendix for details. 
20The general rule of thumb for acceptance rate is about 44% when drawing one parameter and is about 23% 

when drawing a large number of parameters (see Koop (2003) and Train (2003)). 
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conditional on the observed data y; and parameters of the model /3, E. The distribution of 

latent data is truncated normal: 

V i l  A y  ~  TN C ( y i )  {Xi (3 ,  S ) ,  (2.16) 

where TNn(n,n) denotes the multivariate normal distribution with mean and covariance 

matrix fi truncated to the region R. For each individual i the normal density is truncated to 

the region C(#) = C{Ui) x C(HIi) x C(RLi) with 

C(%) = 

C(HIi )  =  

C(RU)  =  < 

[0,00) = i 

(-00,0) if [/; = 0 

[0, oo) if hi; = i 

(-00,0) if HI* =  0 

[0, oo) if RL* = 1 

(-oo, 0) if RL* = 0. 

I follow Geweke (1991) to sample from this truncated multivariate normal distribution. I 

sample each latent index from a univariate truncated normal density conditional on the current 

values of all other latent indices using the inverse distribution function method. 

The details of the algorithm are as follows: 

Step 0: Set (y*)° = [ (U*)°  {Hi;)0 (RL*)0}' = [Ui  HI i  RU]' and S° = J3, where I ,  is the 

identity matrix of dimension j. 

Step 1: Draw /31 from the distribution given in (2.14) conditional on (y*)° and S° (I use the 

fol lowing hyperparameters  for  the  pr ior  d is t r ibut ions:  / i^o  =  0,  Vpo = 1000 *  Ik) -

Step 2: Draw the elements of the covariance matrix E using the Metropolis-Hastings algo­

rithm: 

i. Let E° = S°; 
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b. Compute the errors £j given the realized /31 from Step 1 and latent data (y*)°; 

c. Compute the sample correlations ps^pl between errors in equations i and j ; 

d. Draw a candidate value of (py^, p^nd, P^nd) from the proposal density pprop (.|y*, /3), 

given by:21 

Pi3 {ps^p\cfj 

P23 ~ ^1-^[pi2p13_y'(l_p22)(l_p23)1p12/313+v/(l_/;,22)(l_p23)] (^23 ' °p) ' 

Then construct the candidate covariance matrix Econd as 

^cand _ 

cand ~cand \ 1 f!2 ^ 

psr* i ^ 

\ ^ i y 

e. Accept the accept the candidate covariance matrix Ecand and assign E1 = Econd 

with probability equal to 

prob(accept) = min 
P23nd|(^)°, /31)PPr°P(P?2i p\3> P°s) } 1 

Lp(^, p$3,4,1 W, ' . 

where p(-\y*,(3) is the conditional posterior density given in (2.15), otherwise assign 

£* = E°; 

f. Repeat steps [d] and [e] T times and assign E1 = ET.22 

Step 3: Data augmentation step. Draw the latent data (y*)1 = [([/*) (HIj*)1 (RL*)1}' 

conditional on /31, and E1: 

a. Compute the errors % and given (31 from Step 1 and latent data (HI*)0 and 

21 The variance of the proposal density was chosen so that the acceptance rate was roughly 35%. To determine 
the average acceptance rate the algorithm was initially run with 100 MH step replications. Subsequently, the 
number of MH steps was reduced to 10. 

22The Metropolis-Hastings is repeated to achieve faster convergence. 
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b. Draw (U*)1 from 

TNp^ixiPi+YHIi + 
f  1 w Pi 2 

i 

1 p\z 

p\z 1 

1 P23 

P25 1 

' V  

1 ' \ 
&2i 

£31 

/ 
) ,  if Ui > 0. 

^13 / 

^n-^(-oo,0](xi/?l+7 HIi + 

1- if [7, < 0. 

n1; c. Compute the errors eij given /31 from Step 1 and latent data ([/*) 

d. Draw (HI*)1 from 

TN^oo){xiPl + zivl+ 
( .1 P12 

1 
\ P23 

( 1 \ 
P12 

y P23 J 

1 Pn 

Pl3 1 

1 Y1 ( \ 1 Eli 

y  \ / 

1 PÏ3 

Pl3 1 

-
/ P23 

if tf/j > 0. 

TN^^ixifâ + ziv1+ 
( 1 \ 

P12 

V  ^ 3  y  

z 
1 PÎ3 

Pl3 1 

1 V' < 

y  
eu 

esi 

1-

f 1 \ / 1 1 ^ P\2 1 Pl3 

-1 

\ ^23 ) Pia 1 

( 1 P12 

p\z 
) .  if HL < 0. 
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e. Compute the errors £2% given /31 from Step 1 and latent data (HI*)1; 

f. Draw (RL*)1 from 

TW[0,oo) (Xiô1 + 

1-

^ Pl3 

\  P23 

^  Pl3  

P23 

( 

Pl2 

Pl2 
-1 (  \  

£\i  

1 P12 

Pl2 1 

-1 
\ ^ 7  

^ Pl3 

P23 

)• if RLi > 0. 

TiV(_oo,0](;ci^1 + 

if RLi < 0. 

step 5: repeat steps 1-4 S times. 

The Gibbs algorithm generates a sample of size S from conditional posterior distribution 

of each of the parameters of the model. The first So draws are discarded as burn-in because 

the Markov Chain has to converge to the joint posterior distribution of the parameters of the 

model. The remaining Si draws constitute the sample from the joint posterior distribution 

used for the analysis. I obtained 25,000 draws from the posterior distribution. The first 5,000 

were discarded as burn-in, and the remaining 20,000 were used for analysis. 

I performed some diagnostics of the Markov Chains used in this paper. The first-order 

autocorrelation coefficient for pi2 was about 0.93 (it takes about 60 iterations for the effect of 

a shock to disappear). The first-order autocorrelation coefficients for the remaining parameters 

of interest (p\2, P12, and 7) were substantially lower at around 0.74, 0.73, and 0.77, respectively. 

Although the p\i was mixing slowly, the large number of post-burn-in replications (20,000) 

insures that the sampler covers the posterior distribution sufficiently well. The values of 
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Gelman-Rubin R statistic were lower than 1.015 for all parameters of interest.23 These values 

are within the usual 1.2 cut-off value suggesting that the samplers converged well. The Gelman-

Rubin statistics were obtained by running the Gibbs sampler 50 times with overdispersed 

starting values of all the parameters of the model (10 values were chosen manually to insure 

that extremes were covered, the remaining 40 runs were started at the values drawn from a 

normal distribution centered at zero with a large variance for f3 and drawn from the uniform 

distributions for the correlation parameters). 

2.3 Data 

I use the data from the Household Component (HC) of the Medical Expenditure Panel 

Survey (MEPS), a national survey of the US civilian non-institutionalized population adminis­

tered by the Agency for Healthcare Research and Quality (AHRQ). The HC contains detailed 

information about individuals' demographics, employment, income, health, health insurance 

status, and health care utilization. Although the MEPS is a panel survey, its longitudinal 

dimension is quite short. Respondents are interviewed five times over the course of two and 

a half years. It is an ongoing survey that began in 1996, with new panels introduced each 

year, resulting in annual files containing overlapping panels. I use the 2000 MEPS, the first 

year to contain a series of attitudinal questions that were asked in the paper-and-pencil Self-

Administered Questionnaire (SAQ). There are four agree-disagree (ranging from 1-disagree 

strongly to 5-agree strongly) questions:24 

1) I do not need health insurance, I'm healthy enough; 

2) Health insurance is not worth the money it costs; 

3) I am more likely to take risks than the average person; 

4) I can overcome illness without help from a medically trained person. 

The sample is restricted to the adult non-elderly population aged 18 to 64.25 Following 

23The values of Gelman-Rubin statistic were lower for pis and pas- This is likely due to the fact that third 
equation does not have endogeneity links to the first two equations. 

24In the econometric implementation, I group individuals whose answers were 'strongly disagree' and 'disagree 
somewhat' into one class and the rest of responses into the other. 

25Age is computed as of July 1, 2000, the appropriate age for any analysis involving variables from SAQ. 
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Monheit and Vistnes (2004) who used the same variables, I also exclude full-time students. 

Full-time students, children, and the elderly are likely to face substantially different choice 

sets regarding the insurance status. I also restrict the sample to individuals who were either 

insured the whole year or uninsured the whole year. The temporarily uninsured have been 

found to differ from both the full-year insured and the full-year uninsured in their health care 

utilization patterns (see Li and Trivedi (2004)). The group of part-year uninsured is highly 

heterogenous and, therefore, probably deserves special attention, which is beyond the scope of 

this paper. Following Monheit and Vistnes (2004), I also exclude individuals whose answers 

to the SAQ questionnaire were provided by a proxy (most often a spouse). After deleting 

observations with missing values, I arrived at a sample of 7,967 individuals. Definitions of all 

variables along with summary statistics are given in Tables 2.1 and 2.2. 

To study potential differences in incentive effects of health insurance on different types of 

health care utilization, I use four different dependent variables corresponding to four different 

types of health care utilization - office-based visits (OBVISIT), outpatient visits (OPVISIT), 

emergency room visits (ERVISIT), and hospital discharges (IPDIS). In addition, I use four dif­

ferent dependent variables that describe attitudes (NONEEDHI, HINOTWRTH, TAKERISK, 

and OVRCMILL), each corresponding to one of the SAQ questions described above. The 

system of equations is estimated 16 times, separately for each combination of the utilization 

variables and the attitudinal variables. Both private and public insurance were used in assign­

ing the insurance status to each individual (INSURED). 

The set of controls used in all three equations consists of demographic variables, education, 

family income, employment status, regional and MSA dummies, and a variety of measures of 

health status. It is well-known that in endogenous treatment models the treatment parameter 

7 is not non-parametrically identified. Identification in my model can be achieved via the 

nonlinear functional form of the model, but for robustness I also impose a set of exclusion 

restrictions suggested by Li and Trivedi (2004). In particular, in the insurance equation I use a 

set of variables related to the demographic characteristics and health condition of dependents 

like children and spouse: spouse's age (SPACE), spouse's education (SPEDU), a dummy for 
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Table 2.1 Variable definitions and descriptive statistics 

variable description mean st.dev. min max 

AGE Age as of July, 2001 * 0.1 4.14 1.18 1.8 6.4 
AGESQ AGE squared 18.48 9.83 3.24 40.96 

FEMALE 1 if female 0.57 0.50 0 1 
FEMALEAGE FEMALE* AGE 2.34 2.22 0 6.4 

BLACK 1 if black 0.14 0.34 0 1 
HISPANIC 1 if Hispanic 0.20 0.40 0 1 

EDUYEARS Years of education, when first entered 12.97 2.89 0 17 
MEPS 

FAMSIZE Family size 3.03 1.54 1 14 
FAMINCOME Family income in $10,000 5.91 4.3 -0.39 36.06 

MARRIED 1 if married 0.61 0.49 0 1 
EMPLOYED 1 if employed in the second-round inter- 0.78 0.41 0 1 

NORTHEAST 
view 
1 if resides in North-East Census Region 0.15 0.36 0 1 

MIDWEST 1 if resides in Midwest Census Region 0.23 0.42 0 1 
SOUTH 1 if resides in South Census Region 0.38 0.49 0 1 

MSA 1 if resides in MSA 0.78 0.41 0 1 
PHYSEXCEL 1 if perceived excellent physical health 0.25 0.43 0 1 
PHYSPOOR 1 if perceived poor physical health 0.02 0.15 0 1 

MENTEXCEL 1 if perceived excellent mental health 0.38 0.49 0 1 
MENTPOOR 1 if perceived poor mental health 0.01 0.09 0 1 

FUNCLIM 1 if reported functional limitations 0.07 0.25 0 1 
SOCLIM 1 if reported social limitations 0.03 0.16 0 1 

NPRIORCOND Number of priority conditions 0.73 1.01 0 8 
ILLINJ 1 if had an illness or injury requiring im­ 0.34 0.47 0 1 

mediate medical attention 
SPACE Spouse's age 2.68 2.32 0 8.5 
SPEDU Spouse's years of education 7.92 6.77 0 17 

SPRICOND 1 if spouse has any priority conditions 0.29 0.46 0 1 
SICCHILD 1 if has a child that easily falls sick 0.13 0.34 0 1 
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Table 2.2 Variable definitions and descriptive statistics 

variable description mean st.dev. min max 

OBVISIT 1 if any office-based visits in 2000 0.71 0.45 0 1 
OPVISIT 1 if any outpatient visits in 2000 0.15 0.36 0 1 
ERVISIT 1 if any emergency room visits in 2000 0.11 0.31 0 1 

IPDIS 1 if any hospital discharges in 2000 0.07 0.26 0 1 
INSURED 1 if insured the whole year, =0, if unin­ 0.82 0.39 0 1 

sured the whole year 
NONEEDHI 1 if didn't disagree with 'I do not need 0.14 0.35 0 1 

health insurance, I'm healthy enough' 
HINOTWRTH 1 if didn't disagree with 'Health insurance 0.34 0.47 0 1 

is not worth the money it costs' 
TAKERISK 1 if didn't disagree with 'I'm more likely 0.36 0.48 0 1 

to take risks than average person' 
OVRCMILL 1 if didn't disagree with 'I can over­ 0.34 0.47 0 1 

come illness without help from medically 
trained person' 

spouse's any priority conditions (SPRICOND), and a dummy for presence of a child who easily 

gets sick (SICCHILD).26 

2.4 Results 

Posterior means and standard deviations of the parameters of interest (correlation coeffi­

cients and the endogenous treatment parameter 7) are given in Table 2.3.27 

Two robust results emerge from Table 2.3. First, the posterior means and standard de­

viations of the treatment parameter 7 suggest that the probability of utilizing office-based 

and outpatient services is strongly affected by insurance status. At the same time, consistent 

with previous literature, I find no evidence of an incentive effect of health insurance in the 

consumption of inpatient or emergency room services. Second, the estimates of the covariance 

matrix 2 do indicate the presence of private information. Although the overall selection ef­

fect, as measured by the correlation between unobservables in the utilization and insurance 

26The priority conditions include diabetes, asthma, high blood pressure, heart disease, stroke, emphysema, 
and joint pain. 

27The posterior statistics for all the remaining parameters of the model are not reported here to save space 
but are available upon request. 
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Table 2.3 Results 

dependent variables 7 P\2 P13 P23 

OBVTSIT, INSURED, NONEEDHI 0.6811*** -0.0263 -0.1507*** -0.2571*** 
(0.1811) (0.1030) (0.0282) (0.0256) 

OBVISIT, INSURED, HINOTWRTH 0.6290*** 0.0044 -0.0635*** -0.2721*** 
(0.1635) (0.0925) (0.0238) (0.0220) 

OBVISIT, INSURED, TAKERISK 0.7024*** -0.0393 -0.0601*** -0.1416*** 
(0.1714) (0.0975) (0.0218) (0.0228) 

OBVISIT, INSURED, OVRCMILL 0.7252*** -0.0514 -0.1062*** -0.1285*** 
(0.1832) (0.1042) (0.0218) (0.0239) 

OPVTSIT, INSURED, NONEEDHI 0.5838*** -0.1805 -0.0851** -0.2573*** 
(0.2224) (0.1294) (0.0366) (0.0253) 

OPVISIT, INSURED, HINOTWRTH 0.4820** -0.1189 -0.0592** -0.2726*** 
(0.2173) (0.1244) (0.0283) (0.0223) 

OPVISIT, INSURED, TAKERISK 0.5253** -0.1444 -0.0401 -0.1420*** 
(0.2372) (0.1355) (0.0250) (0.0232) 

OPVISIT, INSURED, OVRCMILL 0.5630*** -0.1673 -0.0746*** -0.1277*** 
(0.2132) (0.1230) (0.0250) (0.0239) 

ERVTSIT, INSURED, NONEEDHI -0.0358 0.0485 -0.0857** -0.2556*** 
(0.2397) (0.1356) (0.0389) (0.0254) 

ERVISIT, INSURED, HINOTWRTH -0.0619 0.0632 -0.0620** -0.2722*** 
(0.2302). (0.1296) (0.0304) (0.0220) 

ERVISIT, INSURED, TAKERISK -0.0296 0.0442 0.0075 -0.1414*** 
(0.2348) (0.1330) (0.0272) (0.0230) 

ERVISIT, INSURED, OVRCMILL -0.0257 0.0422 -0.0680*** -0.1280*** 
(0.2400) (0.1353) (0.0281) (0.0237) 

IPDIS, INSURED, NONEEDHI 0.1721 0.1158 -0.1027** -0.2561*** 
(0.2948) (0.1627) (0.0445) (0.0256) 

IPDIS, INSURED, HINOTWRTH 0.1393 0.1368 -0.1112*** -0.2720*** 
(0.2615) (0.1444) (0.0334) (0.0217) 

IPDIS, INSURED, TAKERISK 0.0539 0.1802 -0.0972*** -0.1414*** 
(0.3030) (0.1665) (0.0312) (0.0232) 

IPDIS, INSURED, OVRCMILL 0.1297 0.1412 -0.1020*** -0.1277*** 
(0.2560) (0.1423) (0.0311) (0.0235) 

Notes: Standard errors are displayed in parentheses below coefficients; *** - significant at 1%, 
** - significant at 5%. 
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equations, pu, is statistically not distinguishable from zero, the estimates of both pis and P23 

are negative and significant for most of the specifications. The presence of selection on private 

information would not have been detected in the simpler endogenous treatment model without 

incorporating the indicators of latent information. 

The summary of results reported in Table 2.3 along with the theoretical predictions from 

Section 2.2 are given below: 

1 1 +? + ^ 

E(hypothesis) +? 1 -

+ - 1 

' 1 0 - ^  

£(estimated) = 0 1 -

— — 1 

(2.17) 

The presence of private information is indicated by the fact that, conditional on observables, 

both pis and #3 are significantly different from zero. It appears that individuals possess 

private information that is not completely captured by the observables and that is used in 

making both health insurance and medical care decisions. The lack of overall selection on 

private information combined with the estimated presence of private information affecting both 

insurance and utilization decisions suggests that there are other types of private information, 

which induce selection in the opposite direction. In particular, since the aspect of private 

information measured by the SAQ indices used in this paper has negative correlation with 

unobservables in both insurance and utilization, the correlation between unobservables in the 

first and second equations should be positive. The fact that we do not observe such a correlation 

implies that there are other sources of private information that correlate with both decisions 

and that are not captured by the indexes used in this paper. 

The negative posterior means of P23 in all specifications are consistent with theory in that 

more risk-loving individuals (or individuals who claim that they do not need health insurance) 

tend to have a lower probability of having health insurance. The absolute values of the posterior 

means are expectedly bigger in specifications involving the questions directly related to the 

need for health insurance ( "I do not need health insurance, I'm healthy enough" and "Health 

insurance is not worth the money it costs"). 
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The correlation coefficient between unobservables in the utilization equation and risk-

aversion indicator equation, />i3, was hypothesized to be positive, which would indicate that 

more risk-loving individuals tend to have a higher probability of utilizing medical care. The 

posterior output on this correlation coefficient suggests that the contrary is true - more risk-

loving individuals tend to be less likely to consume medical care. A notable exception is the 

specification involving the direct question on risk-aversion ("I am more likely to take risks 

than average person" ) and emergency room utilization. A possible explanation of the negative 

estimates of p\3 is that the SAQ indices themselves reflect more than just attitudes toward 

risk taking behavior. Specifically, the first SAQ question ("I don't need health insurance, I'm 

healthy enough" ) makes a direct reference to the health state. Not surprisingly, the specifi­

cations involving this question show the consistently bigger estimates of p\z in absolute value 

compared with specifications involving other questions. A similar argument applies to specifi­

cations involving the last SAQ question ("I can overcome illness without help of a medically 

trained person"). The direct reference to the ability to avoid medical help even in case of 

illness makes it logical to expect a negative correlation with observed utilization. 

The lack of hypothesized positive correlation in specifications involving the direct risk-

aversion question is harder to explain. A possible explanation is that the health care markets 

are more complex than basic contract theory would predict. In particular, standard asymmetric 

information models commonly assume that the outcome (accident, illness) is publicly observed 

and does not have to be verified (diagnosed). Furthermore, the consumption of medical care is 

driven not only by an individual's objective health state, but also by her subjective perceptions 

of both her health state and of the potential usefulness of medical intervention, which may de­

pend on risk-aversion. Although insignificant, the only positive estimate of p\z, which involves 

ER utilization and the direct risk-aversion question, is suggestive of the complex nature of 

imperfect information in health care markets. The pair of dependent variables (ERVISIT and 

TAKERISK) is probably least affected by other types of informational asymmetries inherent 

in medical care markets. On the one hand, some of the ER visits result from easily observable 

injuries that require medical intervention by any subjective standards. On the other hand, 
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TAKERISK provides the most direct measure of risk-aversion (not contaminated by attitudes 

toward other things). 

It is also interesting to note that, although insignificant, the sign of the treatment coefficient 

7 in the specifications involving emergency room utilization is negative. It contrasts with 

all other types of utilization and is potentially indicative of the proposition raised in health 

economics literature that some of the uninsured use the ER as a way to get non-emergency 

treatment. However, more research is needed on this question before solid conclusions can be 

drawn. 

2.5 Concluding Remarks 

In this paper I provide additional evidence on the selection and incentive effects of health 

insurance and extend the empirical literature by testing for the existence of multiple types 

(dimensions) of unobserved information. Using data on individual attitudes available in the 

MEPS survey, I am able to detect the presence of informational asymmetries even when the 

direct test does not signal any selection on unobservables. The evidence suggests that there 

are multiple types of private information inducing selection in opposite directions. In addition, 

I find strong evidence that insurance status affects the probability of using office-based and 

outpatient care. I also provide an additional interpretation of the indices of latent information 

available in the MEPS. Lastly, the results suggest that the role of risk-aversion in medical 

insurance markets is more complex than basic asymmetric information models suggest. 
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CHAPTER 3. CAPITAL STRUCTURE AND PERFORMANCE OF 

BUSINESS START-UPS: THE ROLE OF UNOBSERVED 

INFORMATION AND INCENTIVES 

A paper to be submitted to The Journal of Finance 

Dzmitry Asinski1, Olena Chyruk2 

Abstract 

This essay is the first paper to examine the relationship between capital structure and 

performance of business start-ups in the presence of imperfect information. Economic theory 

identifies two potential effects caused by imperfect information that determine the relationship 

between capital structure and performance. On the one hand, capital structure may affect 

performance because of moral hazard (incentive effect). For example, outside equity dilutes 

ownership and thus decreases an entrepreneur's incentives to exert effort. On the other hand, 

firms may self select into certain capital structures based on private information about their 

future expected success (selection effect). For example, they may choose higher leverage based 

on favorable future prospects to avoid sharing the returns with outside equity holders. In this 

paper we investigate which effect dominates in the data by specifying an econometric model to 

jointly estimate capital structure and performance of business start-ups. We estimate the model 

using a Gibbs sampling algorithm with data augmentation. We use a unique data set collected 

by the National Federation of Independent Business (NFIB) Foundation. Our results suggest 

that debt does not have a significant incentive effect on performance in business start-ups after 

controlling for self-selection. In contrast, both selection and incentive effects are present in the 

1 Primary author. 
2Graduate Student, The University of Iowa. 
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case of outside equity indicating that outside investors are able to both overcome informational 

opaqueness of business start-ups and provide better incentives for performance. 

3.1 Introduction 

The relationship between business financing (capital structure) decisions and performance 

of companies is determined by the presence of two potential effects - selection and incentive 

effects. Both of them are caused by imperfect information. The selection effect happens if 

entrepreneurs possess private information about characteristics of their own business ideas that 

are relevant both to the expected success of their enterprises and to their business financing 

decisions.3 For example, if an entrepreneur expects her business to be very successful in 

the future, she would prefer to engage debt as opposed to external equity to retain all the 

residual profits after repaying the loan. The incentive effect (moral hazard) happens if an 

entrepreneur's actions (for example, effort) are not observed. Economic theory suggests that 

different capital structures create different incentives for entrepreneurs. For example, the 

dilution of an entrepreneur's ownership through outside equity may decrease her incentives 

to exert effort because she has to share the returns with other stakeholders. Lower effort, 

in turn, translates into a weaker performance of her firm. Thus, both of these effects can 

induce correlation between capital structure and performance in the data. The mechanisms 

that generate this correlation are completely different for each effect. 

The main goal of this paper is to test whether firms self-select into certain capital structures 

based on private information, and whether the observed capital structures create incentive 

effects for performance of business start-ups. Our research contributes to the literature in 

several ways. To our knowledge, this is the first paper to test for both selection and incentive 

effects of capital structure of business start-ups. The issues that we study are especially 

relevant to small businesses, which are much more informationally opaque than established 

3The examples of such characteristics may be indicators of quality, productivity, or risk properties of a 
business project that are known only to the entrepreneur (Darrough and Stoughton, 1986). For example, 
Thompson (2005) uses a data set of firms in the US shipbuilding industry in 19th century to show that after 
controlling for firms' quality, survival does not depend on a firm's age. In other words, success of firms measured 
by survival over time is driven by initial unobservable quality characteristics rather than by learning-by-doing 
or other competing explanation. 
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corporations. We also contribute to the empirical literature that evaluates existing capital 

structure and agency theories. While these theories were extensively tested for established 

publicly traded firms, there are only a few papers that study capital structure of start-up firms 

that are not plagued by survivorship bias or limited to certain regions and industries (see, 

for example, Cassar (2004)).4 In addition, we also contribute to the empirical literature by 

proposing new instruments for the effect of capital structure on performance that are consistent 

with theories of entrepreneurship and lending. Lastly, the results we obtain in this paper 

suggest possible directions for future theoretical research on financing and performance of 

entrepreneurial firms. 

It is important to explicitly address the issue of potential selection on unobservables (se­

lection effect) to obtain unbiased estimates of the effect of capital structure on performance 

(incentive effect).5 We deal with the issue of potential endogeneity of capital structure by 

using a type of the endogenous treatment model. To approximate initial capital structure we 

employ three broad measures of outside business financing: bank and government loans, funds 

supplied by individual investors, and any outside financing whether provided by banks or out­

side investors. To measure performance we use growth in number of employees and survival 

after three years. 

Our results indicate that the effect of leverage on the performance of business start-ups is 

insignificant contrary to previous findings on well-established firms. In contrast, both selection 

and incentive effects are present in the case of outside equity suggesting that outside investors 

might be able to both overcome informational opaqueness of business start-ups and provide 

better incentives for performance. This might explain why many new firms first acquire outside 

equity and later shift into debt financing. 

This paper is organized as follows. Section 3.2 provides an extensive literature review on 

capital structure and business performance theories. Section 3.3 describes our econometric 

model, identification, and the algorithm used for estimation. Sections 3.4 discusses the data. 

^Survivorship bias results from the fact that we typically have a non-random sample of all business start-ups 
because we do not observe the failed ones. 

5The bias results from the fact that a capital structure is correlated with the error term in the performance 
regression (both are affected by the private information). 
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Section 3.5 provides the results and Section 3.6 concludes. 

3.2 Literature Review 

To evaluate the effect of capital structure on firm survival and growth while controlling for 

selection, we concentrate on two large theoretical areas - optimal capital structure theories 

and theories of incentives implied by a given capital structure. Although there are several 

theories that incorporate both selection and incentive effects, we are not aware of a single 

unifying theory that explains the problem at hand. While there are many competing finance 

theories of optimal capital structure, most were developed for large companies with dispersed 

ownership where the influence of a single manager or owner is likely to be insignificant. In case 

of start-up firms, an entrepreneur herself and her incentives are major forces behind the choices 

and performance of her firm. Furthermore, contract theory suggests several possible effects of 

capital structure on the entrepreneur's effort and/or her choice of risk-return characteristics of a 

given project. This section reviews the most significant implications of the relevant theoretical 

literature. 

In our empirical analysis, we are primarily interested in whether selection and moral hazard 

are present. Given the various predictions provided by the literature on capital structure and 

performance, we do not have prior expectations about the way unobservable characteristics 

and capital structure affect performance. Instead, we summarize the hterature into three main 

hypotheses and later discuss the consistency of our results with these hypotheses. 

3.2.1 Capital Structure Theories 

There are four leading theories of optimal capital structure developed in the finance liter­

ature (see Myers (2003) for a comprehensive summary). Here we briefly describe them and 

concentrate on the ones that seem most relevant for a business start-up financing: 

1. The Modigliani-Miller value-irrelevance theory states that sources of financing do not 

matter for the value of the firm as long as the capital markets are "perfect". Perfect 

markets imply that markets for capital are not only competitive and frictionless, they 
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are also complete and it is possible to insure against any possible contingency that may 

arise. This theory is mainly used as a starting point to identify the situations when 

markets are incomplete and capital structure may matter. 

2. The static trade-off theory implies that firms choose optimal debt-to-equity ratios such 

that the tax benefits associated with debt are equal to the distress costs associated 

with extra debt at the margin. Interest tax benefits of debt increase the value of the 

firm, while too much debt increases risk of bankruptcy or exacerbates agency costs like 

conflicts between creditors and shareholders. However, there appears to be no definitive 

research that shows that tax incentives play any significant role in debt policy decisions. 

Furthermore, empirical research shows that companies do not try to achieve their optimal 

debt ratios. 

3. The pecking-order theory incorporates asymmetric information about the firm's assets 

and growth opportunities. As a result, the value of shares may not reflect the true value 

of the firm and the issuance of new shares may signal that either those opportunities are 

good or managers are trying to sell overvalued shares. In equilibrium, this leads to the 

following capital structure: firms prefer internal to external finance; if external financing 

is needed, firms first issue less risky debt and only then outside equity. In other words, if 

the manager of a firm has favorable information about assets and growth opportunities, 

he will avoid external equity financing (Myers and Majluf, (1984)). 

4. Agency and asymmetric information theories of capital structure pioneered by Jensen 

and Meckling (1976) state that some unobservable characteristics or actions influence 

the choice of capital structure. Agency theory recognizes that interests of managers 

and owners in the firm are not aligned. This implies a similar capital structure to 

pecking-order theory although the underlining principles are different: pecking-order 

theory assumes that interests of managers and outside owners coincide. If the firm starts 

as being fully owned by the manager, the incentives are aligned properly. If external 

financing is required then the firm should turn to debt to maintain proper incentives. 
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Once debt becomes too risky and there is a chance of default, then the firm turns to the 

last source of additional capital, outside equity. 

It is worth emphasizing that these theories were developed to explain financing decisions of 

big corporations. Among them, the last two theories are most suitable for small and start-up 

firms because these firms usually are most opaque and do not have an established record. This 

may explain why the majority of start-up firms do not have any outside financing at all and 

all the initial investment is financed by the entrepreneur's savings.6 

We concentrate on several relevant theories that describe the relationship between unob­

servable characteristics of the entrepreneur (or a firm) and capital structure. Leland and Pyle 

(1977) and Ross (1977) develop models in which "good" entrepreneurs signal their quality. 

The paper of Leland and Pyle (1977) assumes that quality of the project is known only to the 

risk-averse entrepreneur who wants to diversify his risks in the project. They show that if the 

level of self-financing is observable, then good-quality entrepreneurs would signal their quality 

by partially financing their projects at the expense of diversification. In Ross (1977) "good" 

entrepreneurs choose debt because the risk of bankruptcy is lower for them than for "bad" 

entrepreneurs. Myers and Majluf (1984) argue that if the entrepreneur tries to raise outside 

equity to finance the project then the value of the project may not be perceived as very high 

by outsiders since the entrepreneur wants to share its proceeds. Therefore, financial investors 

would demand a high price for external finance. In that case, debt is preferable to outside 

equity even though bankruptcy becomes an issue. This leads to the pecking order theory with 

internal financing being the cheapest way to finance the business. 

All these theories predict that "better" firms would choose debt to signal their quality and 

that they would prefer debt to outside equity. Therefore, if there were no incentive effects of 

capital structure then we would expect to see that debt is positively related to performance of 

start-ups because intrinsically good firms choose debt and perform well.7 We summarize the 
6Berger and Udel (2003) show that among small firms sampled in the 1993 National Survey of Small Business 

Finance personal and close relatives funds contribute around 45% of all capital employed. In our data set this 
number is close to 64% (See Table 1 below). 

^However, Berger and Udell (2002) show that if debt is too large then there would be an adverse effect of 
debt on performance as the risk of default increases, implying a negative relationship between performance and 
debt. 
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existing capital structure theories in the following hypothesis: 

Hypothesis 1: Firms that expect to be more successful would prefer debt to outside equity and 

we would expect a positive relationship (measured by correlation) between debt and performance 

measures; and negative relationship between outside equity and performance measures. 

3.2.2 Capital Structure and Performance 

In this subsection we describe main theoretical and empirical research on the effect of capital 

structure on performance. In general, these theories are referred to as agency theories, and 

they assume that there are either effort incentives or risk incentives of capital structure. For 

example, outside equity - which usually results in lower ownership share of the entrepreneur-

manager - may induce the entrepreneur to exert less effort. Moreover, the entrepreneur may 

choose either riskier projects, or perquisites, or simply withdraw assets from the firm. This 

problem of providing the correct incentives to insiders has received a lot of consideration since 

it was first raised by Jensen and Meckling (1976). Harris and Raviv (1991) and Myers (2001) 

provide surveys of this literature. The testable implication of this hterature is that debt could 

be used to alleviate such problems and we should observe a positive relationship between debt 

and performance. Moreover, the risk of default may discipline entrepreneurs because in case 

of bankruptcy they risk losing their firms (see, for example, Grossman and Hart (1982)). The 

following hypothesis summarizes the agency theories of effort incentives of capital structure: 

Hypothesis 2: Based on agency theories about effort incentives created by debt, we expect to 

see a positive relationship between debt and performance measures, and negative relationship 

between outside equity and performance. 

While negative effects of outside equity on performance are well understood, there may 

also be negative incentive effects of debt. For example, an entrepreneur who acquired debt 

financing may shift into riskier projects and increase riskiness of her firm. Therefore, for risky 

firms outside equity may be a good monitoring device and result in a positive relationship 

between outside equity and performance (Berger and Udell (2003)).8 In addition, Dybvig and 

8This is one of the rationales for venture capital financing of fast-growing high-tech companies. 



www.manaraa.com

36 

Wang (2002) argue that debt financing may induce an entrepreneur to keep the revenues and 

default on her debt. Such problems would result in a negative relationship between debt and 

performance. The following hypothesis summarizes the agency theories of risk incentives of 

capital structure: 

Hypothesis 3: Based on agency theories about risk incentives created by debt, we expect to 

see a negative relationship between debt and performance measures, and positive relationship 

between outside equity and performance. 

3.2.3 Models with Both Types of Informational Frictions 

There is also a series of papers that incorporate both adverse selection and moral hazard 

into financing decision. Darrough and Stoughton (1986) develop a model of optimal capital 

structure under both adverse selection and moral hazard which shows that inside equity de­

creases with volatility of returns and the entrepreneur's effort decreases with higher expected 

marginal productivity when marginal productivity and riskiness of the project are unobserv­

able characteristics of the entrepreneur. This model predicts that more efficient entrepreneurs 

would choose more debt while entrepreneurs with riskier projects would prefer less debt and 

more outside equity, other things equal. However, due to assumptions of their model it is not 

possible to determine the effect of effort on performance. Wahrenburg (1996) constructs a 

principal-agent model of project investment with both adverse selection and so called "false" 

moral hazard. He shows that the optimal contract can be implemented in terms of debt and 

equity payoffs with higher ability agents keeping 100% stake in the project and repaying debt 

to the principal. Bajaj, Chan and Dasgupta (1998) modify Leland and Pyle's (1977) model 

to allow for both adverse selection and moral hazard in business financing with the degree 

of moral hazard measured as control rights of the entrepreneur. This model explains capi­

tal structure and firm performance in terms of exogenous ownership structure. They show 

that debt increases with ownership because ownership works as a signal of quality with higher 

ownership meaning better quality, and that the performance also increases with ownership. 

Jullien, Salaniè and Salaniè (2005) construct a model of moral hazard with agents differing in 
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unobservable risk-aversion. They find that more risk-averse entrepreneurs would prefer debt to 

equity. Moreover, the probability of success of the project increases with inside equity because 

stimulates the entrepreneur's effort. The testable prediction of these models is that debt is 

positively related to performance and better firms choose debt over equity. Furthermore, the 

success of the project is also positively related to debt. 

There are two other papers that study capital structure choice and firm performance si­

multaneously as we do here. The most closely related to our work is a study by Dessi and 

Robertson (2003). They examine the effect of leverage on performance of established UK 

firms while explicitly accounting for endogeneity of capital structure choices. They find that 

unobserved firm characteristics are important determinants of capital structure and perfor­

mance. Furthermore, the leverage stops being significant after controlling for capital structure 

endogeneity suggesting that debt is chosen optimally according with the static trade-off the­

ory. However, the main purpose of our study is to examine entrepreneurial firms at the time 

of their creation, and to do so we employ a different methodology and different measures of 

performance. Berger and di Patti (2006) consider the impact of capital structure on firm per­

formance (measured as profit efficiency) and argue that firm performance influences capital 

structure because either more efficient firms have lower expected costs of bankruptcy (there­

fore, they acquire more debt) or more efficient firms want to protect the rents that come from 

higher profit efficiency and shareholders prefer to hold more equity to avoid liquidation leading 

to less debt. Our paper differs from Berger and di Patti (2002) in that we use survival and 

growth as the performance measures, and they are measured after the choice of initial capital 

structure is made, and therefore they cannot influence the choice of initial capital structure. 

The simultaneity in our paper comes from the idea that some unobservable variables influence 

both capital structure and performance. As a result, capital structure endogeneity has to be 

taken into account when estimating the effect of capital structure on performance. Further­

more, our sample is not limited to one particular industry unlike Berger and di Patti (2002) 

paper that concentrates on banking industry. 
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3.2.4 Selection and Moral Hazard in Lending and Insurance Markets 

The issue of selection and incentive effects is explored in other markets as well. Edelberg 

(2004) proposes and tests a model of consumer lending that incorporates both adverse selection 

and moral hazard. Using the data on mortgages and automobile loans from the Survey of 

Consumer Finances, she shows that consumers self select into contracts that differ in terms of 

interest rates and levels of collateral. Moreover, higher levels of collateral induce consumers to 

exert higher effort to ensure the loans are repayed. Using a data set that describes the Kansas 

voluntary deposit insurance system for banks during 1910-1920, Wheelock and Kumbhakar 

(1995) show that riskier banks selected to participate in the insurance system, and banks in 

the system chose to hold less reserves and became more prone to risk. 

There is a stream of papers that separate moral hazard and adverse selection in automobile 

insurance markets. Under adverse selection, higher risk agents are more likely to self-select 

into contracts with more coverage. They are also more likely to have an accident. At the same 

time, better coverage has the incentive effect - it induces riskier behavior. In both cases, better 

coverage is positively correlated with probability of an accident. For example, Dionne et al. 

(2004) find that low risk individuals self select into contracts that provide less coverage over 

time, and this induces them to change their unobservable efforts to reduce claims. Chiappori 

and Salaniè (2000), however, find no evidence of adverse selection or moral hazard in the French 

market for automobile insurance. But Abbring et al. (2003) argue that dynamic analysis would 

be more relevant because previous experience could partially reveal hidden effort. 

3.3 The Model 

3.3.1 General Outline 

Entrepreneurs are assumed to have private information about the expected future outcome 

of their start-up. The observed capital structure (e.g., the level of external debt) will be 

affected by this private information. For example, it is often hypothesized in the theoretical 

literature that businesses with better prospects will choose debt over external equity because 
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debt does not dilute ownership. Conditional on the chosen capital structure, an entrepreneur 

decides how much effort to supply, which in turn affects performance. For example, high levels 

of external equity (as opposed to external debt) are generally believed to reduce the effort 

because the entrepreneur will own just a part of the business. Based on these hypotheses, we 

expect to have a positive correlation between the level of debt of each individual start-up and 

its success. 

We have two distinct processes that can generate this positive correlation. On the one hand, 

entrepreneurs who expect to do well may want to have as large an ownership share as possible 

and not dilute it with external equity by inviting outside investors. If an entrepreneur does not 

have high expectations for the future payoff (either because the project is expected to generate 

fairly low returns or the risk is very high), she may prefer to bring in external investors to share 

the risk. On the other hand, given the chosen capital structure, entrepreneurs with high levels 

of debt and low levels of external equity will face relatively high incentives to supply more 

effort than those entrepreneurs with high levels of external equity because their ownership 

is not diluted (standard moral hazard). Assuming that high levels of effort translate into 

better performance, we will once again observe positive correlation between debt and success. 

The direction of the causality is different. In one case, the expectation of success affects the 

choice of capital structure. In the other case, the capital structure affects incentives, and thus, 

probability of success. 

Each start-up can face different debt (or external equity) contract offers that reflect its 

observable characteristics. In other words, observably more promising enterprizes may be 

offered more attractive debt contracts thus making them more likely to increase their debt 

levels. However, the important feature of the decision making process is that firms may have 

the unobserved by the potential lender propensity to perform well, which would obviously 

influence both the capital structure decision and the resulting performance. This means that 

estimating the effect of capital structure on performance will generally produce biased estimates 

because the error term will correlate with observed debt levels. 

These unobserved factors can be accounted for in the following econometric specification. 
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With the subscript i denoting an individual start-up, we denote by Y* some continuous measure 

of its performance and by L* some continuous measure of its capital structure: 

y i  = x u p i  + 7 l *  +  771», (3.1) 

L* — X2i02 + r)2i, (3.2) 

where xu and zg, are lxfcl and 1 x fc2 vectors of exogenous variables; (3\ and 02 are fcl x 1 and 

k2 x 1 vectors of parameters, 7 is a scalar parameter measuring the effect of the endogenous 

capital structure on performance; and % = (%,%)' is the vector of error terms assumed to 

be normally distributed with zero mean ju — (0,0)' and covariance E: 

S = CTl1 . (3.3) 
^ &12 ct22 y 

Importantly to our analysis, the error terms of the two equations are allowed to be correlated 

with each other. This correlation term is designed to capture unobserved private information 

about the quality of the start-up, which directly influences the outcome Y* and also affects 

the capital structure (borrowing) decision L* of each firm. 

We use two distinct measures of performance - survival and a measure of growth. In our 

data set, which we describe in more detail in the next section, we have data on the survival 

of business start-ups within three years of the initial interview. We use the change in the 

number of employees as a measure of growth. Therefore, we have one censored continuous 

(growth) and one dichotomous (survival) measure of performance of business start-ups. We 

use the percent of the total investment into business coming from loans as our measure of 

debt and the percentage of the total investment coming from external individual investors 

and investment companies as our measure of external equity. Both are continuous censored 

random variables. When using the discrete measure of performance, we have to make certain 

adjustments to our error covariance matrix, which will have implications for the estimation 

procedure. In particular, the variance of the error term of the first equation is normalized to 
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1. We refer to this specification with the normalized variance of the error in the first equation 

(dichotomous performance measure) as Specification 1 and to the model with the unrestricted 

variance (censored continuous performance measure) as Specification 2. 

Denoting by Yj and Li the observed measures of performance and capital structure, respec­

tively, we have the following system of equations: 

1? = x i i p i  + 7 l i  + t i n ,  

Li = X21P2 + f]2i- (3.4) 

The latent data Y* and L* are transformed into observed data Y{ and Li in the following 

manner for Specification 1 : 

L i  =  I [ L * > 0 \ x L * ,  (3.5) 

and for Specification 2: 

L i  =  I [ L * > 0 ] x L l  (3.6) 

where I  [.] is an indicator function taking value 1 if the expression in brackets is true and value 

0 otherwise. 

The hypotheses formulated in the previous section can be expressed in terms of the param­

eters of our model as follows: 

Hypothesis 1: We expect a 12 > 0 for outside debt and (T12 < 0 for outside equity. 

Hypothesis 2: Based on agency theories about effort incentives created by debt, we expect 

7 > 0 for outside debt and 7 < 0 for outside equity. 

Hypothesis 3: Based on agency theories about risk incentives created by debt, we expect 

7 < 0 for outside debt and 7 > 0 for outside equity. 
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3.3.2 Estimation Details 

We use Bayesian estimation procedures to estimate the system of equations (3.4) jointly. 

The choice of methodology is motivated by the superiority in performance of Bayesian methods 

over Maximum Simulated Likelihood (MSL) in this type of endogenous treatment models.9 The 

basic idea is to obtain the posterior distribution of the parameters of the model. The posterior 

distribution is proportional to the product of the likelihood of the observed data and prior 

distribution of the parameters: 

p (parameters\ data) oc p (data\parameters) p (parameters). 

We use simulation to obtain samples from the posterior distribution of the parameters because 

it does not have a form of any recognizable distribution. We develop a straightforward Gibbs 

sampler with data augmentation to simulate draws from the posterior distribution. The data 

augmentation step draws the values of latent variables y* and l* conditional on the observed 

data and the parameters of the model (see Albert and Chib (1993)). The details of the 

algorithms are provided below. We derive two separate posterior simulators for each of the 

two specifications because the sets of the parameters to be estimated are different. 

We start by deriving the (augmented) likelihood of the latent variables y* and l*. We 

stack the two equations in the following manner: 

p = 

Vi  =  

7 

\ a y 

\l" i 

(fcl+fc2+l)xl 

2x1 

xi = 
i  L i  0ixfc2 

Olxkl  0  X 2 i  I  
/ 2x 

m -

(fcl+fc2+l)  

2x1 

9See, for example, Munkin and Trivedi (2003). 
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The system can then be expressed as 

Hi — Xil3 + T)i-

We then stack all the observations together as 

y -
1/2 \x = 

/ \ 

xo 
\v = 

( m ^ 

V2 

2nx 1 \ J 2nx(fcl+fc2+l) \ J 2nxl 

to produce 

y* = X(3 + T}. 

We can express the covariance matrix for y* as 

fi = 

/ H~ l  0  . . .  0  ^  

0 H-1  . . .  0 
= In® H \ where H = S 

V 0 0 . . . H ' 1  I  
x  7  2nx2n 

-1 
2 x 2 "  

Conditional on the parameters of the model, the augmented likelihood can be expressed 

as: .10 

p(y'|& 2) = (27T)-% 14, <8 exp(-!(;/' - ® 

oc exp - %^)]). (3.7) 
i=1 

For computational simplicity, the latent variables Y* and L* are treated as additional 

parameters of the model. The appropriate steps are added to our Gibbs sampling algorithm 

to draw these latent variables conditional on the realized values of the main parameters of the 

°See appendix for details. 
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model. The latent data are then integrated out to obtain the posterior distribution of the main 

parameters. The augmented posterior p(y*,/3, £| data), which also contains the latent data, 

is proportional to 

p(y*,/3, E| data) <xp(data\y*)p(y*\(3,T,)p(p,Z.), 

where p(data\y*) is the distribution of the observed data conditional on the latent data (this 

distribution is going to be different for the two specifications we use), p(y*\f3,2) is the aug­

mented likelihood, and p (/?, E) is the prior distribution of the main parameters. 

We specify independent priors for (3 and H-1. The prior for /3 is normal and given by: 

f~w(a),vb). (3-8) 

The conditional posterior of f3 can be shown to be also normal:11 

(3.9) 

v1 = ô2x'ihxi + v0-1)-1 

i= 1 

f31 = V1Ç£x'iHy* + Vo-10o). 
i=i 

The prior and the posterior distributions of the precision matrix H depends on what type of 

dependent variable Yi we use. We consider two cases. 

The first case is when Y; is a censored continuous random variable. We assume a Wishart 

prior for the precision matrix H: 

H ~ W ( v o , H o ) .  (3.10) 

llSee appendix for details. 
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It can be shown that the conditional posterior distribution of H is also Wishart 

H\data, f3, y *  ~ W  { v \ , H \ )  (3.11) 

v\ = vq + n 

h i = (»i -x^ )  w  -  x ^ y + v )  •  

The other case that we consider is of the binary survival dependent variable Yi. The ap­

proach developed for the continuous dependent variable is not directly applicable here because 

the variance parameter in binary discrete choice models is not identified. Only the ratio -fW is 

identified. This follows from the fact that we do not observe the underlying latent propensity 

Y*. Thus, in the case of dichotomous dependent variable we have to work with the following 

identified covariance matrix: 

h-1 = 

p <722 

1 P 

p h_1 + p2 

\ 

/ 
(3.12) 

The reason to use the parametrization given above is that it allows us to use the properties 

of the multivariate normal distribution. In particular, p(%) = p {r)u)p (r]2i\riu)- We restrict 

Vu ~ N (0,1), while r/2i\rju ~ N (prju, o-n — (?). Following McCulloch et al. (2000), we specify 

the following prior 

p { p , h )  = p ( p ) p ( h )  

p ~ N (po,Vpo) 

h ~  G  { v o , h o ) ,  

(3.13) 

where G (uq, ho) is the gamma distribution with mean ho and degrees of freedom vq. The 
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likelihood with this new parametrization can be rewritten as: 

P { y *\P, P , h )  ° c  \H\^ e x p {-^tr[^2v'iHrii]) 
i=i 

1 « 
oc h$ exp (-- (rfii (l + hp2) - + rfcth)). (3.14) 

Observe that given p, h, the distribution of H is degenerate.12 Therefore, the conditional 

posterior for (3 is exactly the same. The conditional posteriors of (p, h) are given by: 

p\data, /3, h, y* ~ N (pi, Vpl) (3.15) 

i=i 
n  

P i  = Vpl(poV^ + /i]>3w72i), 
i=i 

and 

h\data,/3,p ~ G (vi, hi) (3.16) 

v \ — v q  +  n  

h  r  |  ( m i f - % i ) ^ _ i  
1 lfto(D + ") N + n) J • 

We use Gibbs sampling algorithms to successively draw from conditional distributions for 

parameters of the model /3, H and latent indices Y* and L*. We denote the sth realization 

of variable a by a". The total number of draws S = So + Si will be made with the first Sq 

discarded as the burn-in. We use the following algorithm for Specification 1 : 

step 0: Set (1^*)° = Y,, (L*)° — Li, p° = 0, and h° — 1 (which corresponds to £ equal to 

identity matrix); 

step 1: draw (31 from the distribution given in (3.9) conditional on (Yf)0, (Z*)°, p° and h°; 

step 2: draw the elements of covariance matrix S as a block: 
12It can be shown that the transformation from ( p ,  h )  to H  is one-to-one. 
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draw pl from distribution given in (3.15) conditional on (Yj*)°, {L*)°, (31 and h°; 

draw h1 from distribution given in (3.16) conditional on (Yj*)°, (L*)°, (31 and p°; 

step 3: draw (L*)1 conditional on ( Y * ) ° ,  p1, h 1  and /31 as: 

= 

Li if Li > 0 

draw from normal distribution 

truncated above at 0 with mean equal to 

Z21CS2)1 + /[(%*)" - iii(A)1 + ^Li] 

and variance equal to(Zi1)-1 if Li < 0; 

step 4 :  draw (i^*)1 conditional on (L*)1, p1, h1 and /31 as: 

draw from normal distribution 

truncated below at 0 with mean equal to 

xli(Pl)1 + {(L*)1 ~ X202)1) 

and variance equal to 

1 ~ if Fj > 0 

draw from normal distribution 

truncated above at 0 with mean equal to 

X l i i P l ) 1  +  ( { L * ) 1  -  X 2 i ( 0 2 ) 1 )  

and variance equal to 

1 - (p1)2 
1 (p-t+(m)-i if Yi < 0 

step 5: repeat steps 1-4 S times; 

We use the following algorithm for Specification 2: 

step 0: Set (Fj*)° — Yi and (L*)° = Li, H° = I (where I is an identity matrix); 

step 1: draw /31 from distribution given in (3.9) conditional on (Yf)0, (L*)°, HQ; 

step 2: draw the precision matrix H1 from the distribution given in (3.11) conditional on 

(Y^*)°, {L*)°, (31, then invert it to obtain (S)1; 



www.manaraa.com

48 

step 3: draw (L*)1 conditional on (F^)0, H1 and /31 as: 

if Li > 0 

draw from normal distribution 

truncated above at 0 with mean equal to 

w & x + + y  4 ]  

and variance equal to(<722V ~ 

step 4-'  draw (Y*)1  conditional on (L*)1, H1 and P1 as: 

if Li < 0; 

Yi if Yi > 0 

draw from normal distribution 

truncated above at 0 with mean equal to 

and variance equal to 

(£>12? if Yi < 0 

step 4-'  repeat steps 1-3 S times; 

For each run of Specification 1 we set So = 50,000 and Si = 50,000. For each run of 

Specification 2 we set So = 10,000 and S\ = 50,000. The reason for this difference is that 

our preliminary Monte Carlo tests showed that it takes longer for parameters to converge to 

their true distribution if the dependent variable in equation 1 is dichotomous (implying the 

necessity to simulate the underlying latent variable). We specify proper but sufficiently diffuse 

priors in all cases. For both specifications, the prior distribution of (3 is given by: 

/3 ~ iv(0fci+fc2+i, 100 * Iki+k2+i), 

where Iki+k2+i is the (hi + k2 + 1) x (kl + k2 + 1) identity matrix. We assume the following 
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Wishart prior for the precision matrix H in the Specification 2: 

H ~ W (  
'l 0^ 

X °  l j  

,3). 

We choose the following priors for p and h in the Specification 1 : 

p ~ N ( Q ,  100) 

h ~ G {  2,5). 

We performed some diagnostics of the Markov Chains used in this paper. The post-burn-

in first-order autocorrelation coefficient for the co variance parameter was about 0.91 and the 

autocorrelation for 7 was around 0.87. Although both of them are fairly high, the large 

number of post-burn-in replications (50,000) insures that the sampler covers the posterior 

distribution sufficiently well (it takes less than 50 iterations for the effects of previous shocks 

to disappear). Gelman-Rubin statistics were 1.021 for 7 and 1.011 for the covariance parameter 

in the Specification 1. The values of Gelman-Rubin statistics in the Specification 2 were 1.005 

for 7 and 1.01 for the covariance parameter. These were obtained by running the respective 

Gibbs sampler 50 times with overdispersed starting values of the parameters of the model (10 

values were chosen manually to insure that extreme values were covered, the remaining 40 runs 

were started at values drawn from a normal distribution centered at zero with a very large 

variance). These values are within the usual 1.2 cut-off value suggesting that the samplers 

converged well. 

3.3.3 Identification 

The system of equations (3.1), (3.2) is nonparametrically unidentified. Technically, the 

identification can be achieved by using a non-linear transformation from L* to Li, which we 

do by employing a censored version of the underlying latent index. Nevertheless, it has long 

been noted in the literature that it is preferable to achieve identification through exclusion 



www.manaraa.com

50 

restrictions. Finding appropriate instruments for the effect of capital structure on performance, 

however, has proved to be quite difficult. As we already mentioned, there are only a few papers 

recognizing potential endogeneity of capital structure. Bitler et al. (2005) use the following 

to instrument for the effect of capital structure on effort (which is assumed to be related 

to performance) : (1) a dummy for whether the business was inherited or given to the present 

owner, (2) a dummy for whether the business was started-up by the present owner. The omitted 

category in their analysis consists of those entrepreneurs who bought their current business. In 

addition, Bitler et al. (2005) use the initial investment by entrepreneur as an instrument. Since 

we do not model effort in our specification, we have to justify the use of similar instruments 

in our model. It is arguable that all three are fairly weak instruments. The way in which the 

business was acquired may tell a lot about the (latent) type of entrepreneur, which in turn may 

play an important role in determining whether a start-up will be successful. The size of initial 

investment can be linked to the perception by the owner of the risk involved, which in turn 

may affect her effort and, thus, performance. We have data on whether the business start-up 

was inherited or started up by the entrepreneur herself. We, therefore, include a dummy for 

whether an entrepreneur started the business herself. The omitted category includes those who 

inherited their businesses, were brought in by other owners, promoted, or purchased it. We 

found that the initial capital investment is a very strong predictor of both performance and 

our measures of capital structure. 

We propose several new instruments for the effect of capital structure on performance. 

These variables are related to the access to credit by small businesses. We argue that the 

differences in the ability of small businesses to obtain bank bank loans affect their capital 

structure decisions. At the same time, access to credit should not affect performance directly. 

Our first instrument is the homestead exemption amount (the value of housing equity that 

a person can keep in case she declares bankruptcy) for the state where the business is located as 

an instrument in the capital structure equation. Berkovitz and White (2004) study the effect 

of state bankruptcy laws on small firms' access to credit. They find that in states with high 

homestead exemptions, small businesses (both non-corporate and incorporated) are more likely 
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to be credit rationed and face higher interest rates. Following Berkovitz and White (2004), for 

those states with unlimited homestead exemption we assign the highest observed homestead 

exemption level, and we include a dummy variable taking the value 1 for these states.13 We 

also include the Herfindahl index of the concentration of banking industry for the state of each 

firm's location.14 This variable measures the competitiveness of the banking industry in each 

state. In addition to these two supply-side instruments, we include the median debt-to-assets 

ratio of firms in each industry and state to account for dependence of small firms in each 

industry on bank loans.15 This demand-side variable is introduced to control for "standard" 

leverage levels in each industry/state. Cetorelli and Strahan (2004) use this variable to study 

the effect of competition in the banking sector on market structure of other sectors. It is, 

however, possible to argue that different industries in different states may also differ in their 

inherent ability to survive and succeed. We address this problem by including the change in 

number of firms in each industry/state from 1985 (year of the first interview) to 1987 (year of 

the last interview) in the performance equation. This variable should control for the average 

ability to survive in each industry/state over the sample period. 

3.4 Data 

The primary data source used in this paper is the national survey of business start-up firms 

called New Business in America: The Firms and Their Owners. This survey was first fielded 

in 1985 by the National Federation of Independent Business (NFIB) Foundation. There were 

two more waves fielded in 1986 and 1987, respectively. The sample is drawn from a national 

sample of new business owners that were members of the NFIB. Given that there does not exist 

13In 1985, year of the first interview, eight states had unlimited homestead exemption: Arkansas, Florida, 
Iowa, Kansas, Minnesota, Oklahoma, South Dakota, Texas. The highest homestead examption was $90,000 in 
Nevada. 

14Herfindahl index is calculated as a sum of squared market shares of each institution in the state. Here 
we have to note that it is possible to define institution as a any type of establishment - branch or main 
office. Alternatively, we can count each bank holding corporation as institution. The Federal Deposit Insurance 
Corporation (FDIC) routinely collects data on all lending institutions (branches and main offices). However, 
the data on these is only available to us starting from 1992, which is too long of a period after the first interview 
year, 1985. We do have data on the assets of all banks in 1985 grouped by bank. Therefore, our Herfindahl 
index is based on assets of each bank and not counting each branch as a separate institution. 

15We use the first two digits of the Standard Industrial Classification (SIC) code to define industry. 



www.manaraa.com

52 

a benchmark national sample of new businesses, this survey arguably provides close coverage 

to a nationally representative population of new businesses. Moreover, the characteristics 

of small businesses based on the NFIB survey closely match other business surveys (that 

include new and old firms).16 The survey has some very attractive features, which make it 

particularly suitable for our research. First, it targets new businesses - the majority of the 

firms in the sample are younger than 2 years. We restrict our sample to firms that were 

created since January 1983. The average firm age is just above 14 months. Other major 

data sets involving small businesses have considerably "older" samples.17 We hypothesize 

that in small new businesses the informational problems we study are especially pronounced. 

In addition, survivorship bias becomes an important consideration in any survey of mature 

businesses (which survived until the day of the survey). Second, the survey is longitudinal. 

Although the response rate is greatly reduced by the third (and final) survey year, it still 

allows us to study the performance of new start-ups within the next three years after the first 

wave was fielded. Third, the survey collects an array of important information related to the 

personal characteristics of entrepreneurs themselves. It has been noted in the literature that 

these characteristics are important in determining both financial structure and performance 

of business start-ups (see, for example, Cassar (2004)). Last, the survey contains state and 

industry identifiers, which allows easy matching to other ancillary data sets. The survey, 

however, has several drawbacks. Probably the biggest one has to do with the fact that the 

individual item non-response rate is quite high, which makes it costly for us to include large 

numbers of controls in our equations. Moreover, it does not contain direct (from balance sheets) 

measures of leverage and outside financing. Instead, we have information on the percentage of 

total capital invested prior to the first sale coming from different sources, including bank loans 

and outside investors. 

We now describe the ancillary data sets used in this paper. The information on the change 

of the number of institutions by state/industry over the period 1985-1987 was obtained from 

l6See, Cooper et al. (1990). 
17The average age of a firm sampled by the National Survey of Small Business Finances (NSSBF) is equal to 

13.4 years (Bitler et al. (2005)). 
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the US Census Bureau's County Business Patterns data set.18 We follow Cooper et al. (1990) 

to control for general economic activity in the states by including the change in unemployment 

rates by state over the period 1985-1987 as an additional control variable in the performance 

equation. The data were obtained from the Bureau of Labor Statistics.19 The median debt-to-

assets ratio in each industry/state were computed using the Federal Reserve's National Survey 

of Small Business Finances (NSSBF).20 This data set was collected in 1987. Ideally, we would 

want to have this information for the year 1985. However, the 1987 wave of this survey is the 

closest match available. Dependence on external financing is not likely to change very much 

over the two-year period. The Herfindahl index reflecting the banking concentration in each 

state was computed using the Report of Condition and Income data available at the Chicago 

Federal Reserve Bank's website.21 The data contain information on all banks regulated by the 

Federal Reserve System, FDIC, and the Comptroller of the Currency. The market share of 

each bank was calculated based on total assets of this bank divided by total assets of all banks 

in the state. Finally, information on the bankruptcy homestead exemptions that were in effect 

in 1985 were obtained from Kosel (1985). 

It should be noted that despite a significant non-response rate by the third wave of the 

survey, we still have information on which firms survived and which did not survive. Thus, 

we have two sample sizes - one for the study of survival (Specification 1 ), which is larger 

than the sample size used to explain growth (Specification 2). In the first case, we just need 

the information on survival, which is generally available whether or not respondent actually 

supplied information in third wave (1987). In the second case, we use the change in the total 

employment in each firm as a measure of growth. After deleting all observations with missing 

data we arrive at the sample size of 2820 businesses for Specification 1 and 1522 businesses 

for Specification 2 (the sample for Specification 2 includes respondents in third interview and 

failed businesses (which lost all their employees)).22 Tables 3.1 and 3.2 list the variables (most 
18The data set itself is also available in easy-to-download electronic form at the University of Virginia Library's 

webpage: http://fisher.lib.virginia.edu/collections/stats/cbp/state.html. 
19Available on the web at: http://www.bls.gov/lau/home.htm. 
20The dataset is available on the web at: http://www.federalreserve.gov/pubs/oss/oss3/nssbf87/ 

nssbf87home.html. 
21http://www.chicagofed.org/economic-research_and-data/commerciaLbank_data.cfm 
22As will be explained in the next section, we addressed the high non-response rate by simulating the em­

http://fisher.lib.virginia.edu/collections/stats/cbp/state.html
http://www.bls.gov/lau/home.htm
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of variables are based on responses in the first interview) used in this study along with a brief 

description and summary statistics based on a larger sample. 

3.5 Results 

As shown in Table 3.3, only outside equity had a statistically significant effect on survival. 

One possible explanation of the estimated negative effect is that external equity induces en­

trepreneurs to exert lower effort, which in turn leads to lower survival chances (Hypothesis 2). 

Neither debt nor our measure of overall external finance had any statistically significant effect 

on survival. This is consistent with the findings of Dessi and Robertson (2003). They show 

that after accounting for capital structure endogeneity, debt becomes an insignificant deter­

minant of performance. They suggest that this is consistent with trade-off theory of capital 

structure: if the level of debt is chosen optimally it should not influence performance. 

Our results also suggest that private information about survival chances plays an important 

role in the outside equity decisions. Business start-ups with higher survival chances had higher 

levels of the outside equity financing relative to the overall amount of capital invested. This 

result is not consistent with Hypothesis 1, which predicts that firms with better prospects would 

prefer outside debt because it does not dilute ownership. This suggests that outside investors 

might be able to more successfully overcome informational problems associated with business 

start-ups. At the same time, it is likely that survival is a crude measure of performance, which 

does not properly capture the underlying propensity for a long-term success. 

When estimating the effects of our measures of capital structure on the employment growth 

we have a smaller sample size of 1522 firms in the third year (surviving businesses that re­

sponded to the interview and failed businesses). We addressed this issue by simulating the 

employment growth values for non-responders by adding the appropriate step to the Gibbs 

sampler to draw positive values for non-responders.23 We report the results based on both 

samples - the sample of observed firms and the full sample with simulated values for non-

responders. 

ployment growth values for non-responders. 
23This methodology implicitly assumes that the non-response is random. 
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Table 3.1 Variable definitions and descriptive statistics 

variable description mean st.dev. min max 

outjob4 Devotes full-time to the business: 1-no 
outside employment, 0-any outside job 

0.843 0.364 0 1 

start1 Form of entry: 1- started it, 0-took over 
existing firm 

0.659 0.474 0 1 

agel Age when became principal 
owner / manager 

36.08 9.45 0 68 

moved 1 Moved residence to go into business: 1-
moved, 0-didn't move 

0.208 0.406 0 1 

partners Number of full-time business partners 0.418 0.796 0 8 
managexp Any supervisory/managerial experience: 

1- yes, 0-no 
0.782 0.413 0 1 

firequit Was fired/quit without specific plans: 1-
yes, 0-no 

0.170 0.376 0 1 

diffprod Product is very different from previous 
job: 1- yes, 0-no 

0.376 0.485 0 1 

parenown Parents owned a business: 1- yes, 0-no 0.443 0.497 0 1 
educlev Highest level of education, scale: 1- less 

than high school, 9-advanced degree 
4.34 1.72 1 9 

totjobs The total number of full-time jobs held 
prior to business formation 

4.48 4.25 0 99 

bsll Percentage of business strategy assigned 
to "lower prices" 

11.82 16.85 0 100 

bs21 Percentage of business strategy assigned 
to "better service" 

29.55 21.37 0 100 

bs61 Percentage of business strategy assigned 
to "target missed/poorly served cus­
tomers" 

7.39 11.87 0 80 

opercont Strongly agree(l) to strongly disagree(S) 
with statement " business operating con­
trols in writing" 

2.73 1.12 1 5 

sex Owner's sex: 1-female, 0-male 0.196 0.397 0 1 



www.manaraa.com

56 

Table 3.2 Variable definitions and descriptive statistics (cont'd) 

variable description mean st.dev. min max 

race Owner's race: 1-racial minority, 0-not a 
minority 

0.058 0.233 0 1 

capinv Total capital invested prior to the first 
sale, categorical: 1— < $5,000,8— > 
$500,000 

3.38 1.70 1 8 

invest Percentage of capital coming from outside 
individual investors (not family or friends) 
and investment companies (/100) 

4.70 17.74 0 100 

loans Percentage of capital coming from bank 
and government loans (/100) 

31.78 38.44 0 100 

outside Percentage of capital coming from both 
loans and outside investors (/100) 

36.48 39.46 0 100 

oddsyr The self-perceived chances of success, cat­
egorical: 0-no chance, 10-certain success 

8.15 2.04 0 10 

survive Survived: 1-yes, 0-no 0.783 0.412 0 1 
homestead Homestead exemption in the state, in 

$1,000 
37.10 34.48 0 90 

h-unlimited 1-Unlimited homestead exemption, 0-
otherwise 

0.268 0.443 0 1 

unemp.change Change (difference) in unemployment in 
state over period 1985 to 1987 

-0.736 1.20 -2.6 1.7 

HH Herfindahl index of banking concentration 
in the state 

725.6 697.9 65.8 3243.7 

est-change Change in the number of establishments 
by state/SIC code from 1985 to 1987 

0.101 0.092 -0.388 0.671 

debt_2_assets Median debt-to-assets ratio for the SIC 
code 

0.245 0.099 0.055 0.841 

agef Age of the firm, in months 14.4 6.8 1 29 
changemp Change in total employment in the firm 

from 1985 interview to 1987 interview 
0.955 8.30 -1 175.7 

lgl-forml.2 1-if partnership, 0-otherwise (proprietor­
ship - omitted category) 

0.113 0.316 0 1 

lgl-forml-3 1-if corporation, 0-otherwise (proprietor­
ship - omitted category) 

0.320 0.467 0 1 
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Table 3.3 Results: Survival 

Survival 
7 Covariance 

Capital 
Structure 
Measures 

Loans 

Outside Equity 

External Finance 

-0.054 
(0.182) 

0.003 
(0.053) Capital 

Structure 
Measures 

Loans 

Outside Equity 

External Finance 

-0.957*** 
(0.356) 

0.295** 
(0.119) 

Capital 
Structure 
Measures 

Loans 

Outside Equity 

External Finance -0.054 
(0.272) 

0.011 
(0.070) 

Notes: The sample size is 2,820. Standard errors are displayed in parentheses below 
coefficients; *** - significant at 1%, ** - significant at 5%. 

Table 3.4 Results: Employment Growth 

Employment Growth 
Respondents only Full sample 
7 Covariance 7 Covariance 

Loans -0.071 0.288 0.630 0.049 
Capital (1.287) (0.353) (1.063) (0.291) 

Structure Outside Equity 11.271*** -7.479*** 13.306*** -6.795*** 
Measures (1.768) (1.086) (1.069) (0.595) 

External Finance -0.694 0.315 0.389 0.030 
(1.366) (0.347) (1.124) (0.286) 

Notes: The sample size is 1,522 for respondents and failed firms, and the full sample size is 
2,820. Standard errors are displayed in parentheses below coefficients; *** - significant at 1%, 

** - significant at 5%. 

Table 3.4 shows that the results of the estimation of Specification 2 are qualitatively the 

same for both samples. Only the effect of outside equity was estimated to have a statistically 

significant effect on on the employment growth of those firms that responded to the third 

interview is positive. The positive relationship between the outside equity and the employment 

growth is consistent with Hypothesis 3, which predicts that outside equity is preferred to debt 

because it provides better risk incentives and monitoring. The selection effect of outside equity 

was also statistically significant. Firms with better growth expectations had significantly lower 

proportions of outside equity to initial capital investments. This result is consistent with 

Hypothesis 1. Successful entrepreneurs are less willing to share their returns with outside 

investors and prefer less outside equity in their businesses. 
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The consistent result emerging from tables 3.3 and 3.4 is that outside equity has both 

selection and incentive effects on performance of business start-ups. At the same time the 

results differ depending on which performance measure we use. It is possible to speculate 

that risk-sharing and profit-sharing concerns induce entrepreneurs to select different optimal 

capital structures. It may be that entrepreneurs care more about outside equity when it comes 

to survival as opposed to growth. This might explain why many new firms first acquire outside 

equity and later shift into debt financing. The estimated selection effects of debt or our measure 

of overall external finance are insignificant. 

There is very little theoretical research dealing with incentive structures facing business 

start-ups as opposed to large publicly traded firms. This study suggests directions for future 

research needed to fully understand the differences among various measures of performance and 

how they are influenced by capital structure choices in entrepreneurial firms. In particular, 

it is necessary to explicitly differentiate between risk sharing and profit sharing incentives of 

entrepreneurs. Given the nature of small business start-ups, which rarely rely on any outside 

capital, more work is needed to differentiate between questions related to whether to use any 

outside capital versus questions related to what kind of outside capital to use. 

3.6 Concluding Remarks 

This paper is the first to examine the relationship between capital structure and perfor­

mance of business start-ups in the presence of imperfect information. Our results suggest that 

debt does not have significant incentive or selection effects on performance of business start­

ups. In contrast, both selection and incentive effects are present in the case of outside equity 

indicating that outside investors are able to both overcome informational asymmetries asso­

ciated with business start-ups and provide better incentives for performance. Our results are 

qualitatively different depending on which measure of performance we use. In particular, we 

find that firms with higher survival chances are more likely to have external equity financing, 

which is inconsistent with the theoretical predictions. 
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CHAPTER 4. EMPLOYER-PROVIDED HEALTH INSURANCE: 

PREFERENCES AND CHOICE 

Dzmitry Asinski 

Abstract 

The majority of Americans get health insurance through their employers. One of the 

potential concerns related to employer-provided health insurance is whether some categories of 

workers (typically with low educational attainment) actually have access to jobs with health 

insurance offers. This challenges an assumption imposed in some of the previous literature 

that workers have equal access to both jobs with and without health insurance offers and sort 

strategically according to their preferences. A worker can be uninsured either because of lack 

of choice or because of preferences for a job without a health insurance offer. To be able to 

separate the effect of lack of choice from the effect of preferences, I develop a structural job 

search model with two job characteristics - the offered wage and the availability of insurance. 

I simulate the model to demonstrate the interaction between preferences and availability of 

choice. 

4.1 Introduction 

The problem of the uninsured in United States has moved to the forefront of the public 

policy discussions in the recent years. It is especially important to focus on the employer-

provided health insurance (EPHI) because the majority of Americans obtain health insurance 

from their employers.1 One of the potential concerns related to the EPHI raised in the litera­

1The percentage of insured Americans who get their insurance through employer is around 65% (Employee 
Benefit Research Institute). 
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ture is whether or not some categories of workers actually have access to jobs with insurance 

coverage. Some workers (typically workers with low educational attainment) may find it diffi­

cult to get a job with an insurance offer. The converse may be true for other types of workers 

(highly educated workers). They may find it difficult to get a job without insurance coverage. 

Blumberg and Cancian (2004) classify people into three groups: those who are unlikely to have 

a job with insurance coverage, those who are unlikely to have a job without insurance coverage, 

and those in-between the two groups. The classification is based on the distribution of pre­

dicted probabilities of having a job with an EPHI offer, which is turn was obtained via fitting 

a probit specification to the data from the Current Population Survey.2 The main problem 

with this approach is that the job that an individual is observed to have is the result of the 

job search and not the first job offer that this individual had. The intensity of search for the 

job that fits individual preferences for health insurance coverage depends on the strength of 

the preferences for this particular job characteristic. For example, a person who doesn't really 

care about health insurance will likely accept the first job which comes across and satisfies all 

other requirements that this individual has. On the opposite end of the spectrum, a person 

who really values insurance may choose to search until she finds a job that offers it. Therefore, 

we may have two otherwise identical people with health insurance from their employers, one of 

whom got it quickly because her probability to find a job with it is very high while the other 

found the job after a long search. 

It is, therefore, important to take into account individual preferences for health insurance. 

Two papers by Monheit and Vistnes (1999 and 2004) assess the role played by the preferences 

for health insurance in job search. Either a job with an employer-provided health insurance 

offer or a job without an EPHI offer has to be chosen. The authors developed a simple search 

model which yields the logit specification for the probability of having an EPHI offer. The 

wage differential as well as medical expenses and search costs differentials are approximated by 

a variety of exogenous variables (e.g., age, education). Both papers utilize the unique feature 

of the data sets used - they contain the ranked responses to the attitudinal questions on the 

2The authors divided the population into three groups using the cutoff points of 0.5, 0.85 of the predicted 
probabilities. 
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valuation of the health insurance and on the general risk-taking preferences.3 

The typical data that is available to an econometrician consists of accepted wages and 

indicators of whether chosen jobs have insurance offers. The observed insurance offer state 

may be the result of either strong "preference" or "choice" (availability of it and not the act 

of choosing) or both. In other words, some people may have choice and strong preferences 

and choose accordingly; some others may be stuck in the uninsured state because they do not 

have much choice even though they may have strong preference. Accordingly, the fact that 

a person has a job that offers health insurance may have different interpretation depending 

on preference for having insurance. The important conclusion is that studying either "pref­

erence" or "choice" separately will likely lead to biased conclusions as to their contribution 

to the observed outcome. Suppose, for example, that we intend to estimate the extent of the 

"choice" that an individual has by estimating a linear-in-parameters probit specification with 

the observed insurance state as a dependent variable. Two otherwise very similar uninsured 

persons with drastically different preferences for health insurance coverage will contribute to 

the probability estimation in the same way thus attributing the effect of preferences to other 

dependent variables.4 At the same time, using the self-reported data about preferences for 

health coverage as additional explanatory variables may not solve the problem completely. 

The underlying relationship between preferences and the resulting outcome may be non-linear. 

A person who strongly prefers to have a health insurance offer and has a relatively low cost 

to find such an offer (because she has enough "choice") is likely to behave differently from 

the person who also has strong preference for health insurance but has relatively high cost 

associated with finding it (little "choice"). The latter is likely to have had many job offer 

draws before she found one with EPHI. In addition, simple linear-in-parameters probit is likely 

to be a very poor approximation to the underlying structural model because it effectively ig­

3First paper uses National Medical Expenditure Survey, which was fielded in 1987. The second paper uses the 
2000 wave of Medical Expenditure Panel Survey, which was first fielded in 1996. Both surveys were administered 
by Agency for Healthcare Research and Quality (AHRQ). 

41 have to note that it is unlikely that two people with different underlying degrees of "choice" will be 
observationally identical because this probability correlates with demographics, education and so on. However, 
the point is that one important dimension of personal characteristics - preference for health insurance coverage 
- is missing and it is likely to affect the outcome. 
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nores the possibility of accepting a job because of a very high wage irrespective of its other 

characteristics. 

The purpose of this paper is to demonstrate the interaction of preferences and the availabil­

ity of choice on the observed outcome (insurance status) in a structural framework. In order 

to do so, I develop and simulate a structural job search model. Estimation of structural search 

models has evolved significantly over the last decades.5 Although fairly straightforward, the 

estimation of the model under homogeneity assumption does not produce realistic results. I 

outline the specific problems that make estimation of the parameters of the structural model 

difficult to accomplish under the more realistic assumption of unobserved heterogeneity. 

The paper proceeds as follows. Section 4.2 presents the formal structural search model. 

Section 4.3 provides simulations of the model. Section 4.4 gives some Monte-Carlo evidence 

of the estimation of the model under the homogeneity assumption. Section 4.5 outlines the 

problems with estimation of the more realistic versions of the model and concludes. 

4.2 The Model 

I denote the probability of having an EPHI offer in any single job offer that a person receives 

by p and the probability to be observed with a job that has an EPHI offer by P. I consider p to 

be the measure of "choice" that a person has (p close to either 1 or 0 would mean very little 

choice). The observed outcomes serve as a natural signal of P. However, there are no obvious 

counterparts of p in the data. These two probabilities are obviously the same in the absence 

of search. The difference between the two can at least partly be attributed to the preferences 

for the health insurance offer. 

I will now present a static job search model where each job has two characteristics -

wage and whether or not it offers health insurance coverage.6 The model concentrates on the 

population of workers - unemployment is not an option. Each individual i chooses a job to 

5There are a number of good surveys of the empirical search literature. Canals and Stern (2001) is one of 
the recent comprehensive reviews of the recent developments in the estimation of the structural search models. 

6Adopted from the product variety choice model of Rosen (1978). The important feature of the model is 
that it considers search along two dimensions - price of the product and its characteristics. Since the main 
purpose of this paper is to study the health insurance offers associated with jobs and wage cannot be assumed 
away from the analysis, we have to have at least two dimensions of search. 
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maximize utility given by: 

Ui = log Wi + OJi, (4.1) 

where Wi is the wage, Ii is the dichotomous variable equal to one if the job has EPHI offer, 

and &i is a parameter reflecting the strength of the preference for EPHI. 

The individuals in the model engage in a job search by drawing job offers from the joint 

distribution (p(logWi,Ii\fiu,/j.2i,Pi), which has the following form:7 

<f>(logWi,Ii \nii ,  fX2i,Pi)  -  < 

if/i = l 

p.), if J. = o (4.2) 

0, otherwise, 

where (in, [i2i are the means of the wage distributions for two types of jobs - with and without 

health coverage. That is, conditional on the realization of Ii the distribution of log Wi is normal. 

The means of these two conditional distributions are allowed to be different to account for the 

fact that at least part of the cost of providing health insurance to employees may be shifted back 

onto employees in the form of reduced wages. We have the following marginal distributions: 

i , 1 

<Al(logtoi l . )  = Y <P( l o g W i , I i\.) = -±=e-ï(h*»<-wOa
ft + _±=e-|(logU,i-toi)2

(1 _pi) 
1^0 V2tt * 

/

OO 

(j>{\ogWi, I i \.)d\ogWi = 
•OO 

Pi,  if Ii = 1 

1 -pu if 4 = 0 

0, otherwise. 

The marginal distribution of log Wi is the normal mixture with component means given by 

A*2i} and mixing distribution {pi, 1 —pi} (the marginal distribution of Ii). The parameter 

qpi (= the probability to draw a job with an EPHI offer in any single job application) is of 

particular interest because it explicitly addresses the question whether different people have 

different degrees of flexibility as far as choice of whether to have a job with EPHI offer is 

7The joint distribution is obtained by first specifying the marginal distribution of EPHI offers as a Bernoulli 
draws with probability pt. Then, conditional on the outcome of the Bernoulli process for EPHI offer, wage is 
assumed to be distributed log-normally with means given by fj-u (if I, = 1) and fi2i (if Ii =0). 
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concerned. This parameter is unobserved by the econometrician. In addition to that, we do 

not have any direct signals of p (as opposed to P, which is reflected in observed (accepted) 

jobs with and without EPHI offers). The draws are assumed to be independent, and each draw 

entails incurring a utility cost of the size Cj. 

Now consider the following transformation: 

U  = log w  +  0 1 ,  

V  =  I .  

This transformation is one-to-one, and the inverse is given by: 

log w  =  U  -  6 V ,  

I  =  V .  

The determinant of the Jacobian of this transformation is one: 

\ J \  =  

Therefore, the joint distribution of ( U ,  V) is given by: 

* dlogw 
dV i -e 

w 
di 
W 0 1 

= 1. 

< p ( U i ,  —  

^.e-iw-(«t+w i))2
Ph if Vi  = i 

)'(!_*), if Vi = 0 

0, otherwise. 

The marginal distribution of utility Ui is then: 

i 1 , 
< p ( U i \ . )  =  T  i p ( U i , V i  | . )  =  +  e-3^-"«)a(l - P i )  (4.3) 

V2tt V27T 

I now have a one-dimensional search problem, and the familiar reservation value property 

holds. An individual will accept a job if the utility from it is greater than the reservation 
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utility Ui- The expected utility of the acceptable job offer gross of search costs is: 

U i =  r u i ^ ^ - d u i ,  
JVi *  

(4.4) 

r OO 
where tt» = / <p(Ui\ .)dUi.  

J U i  
(4.5) 

The ratio in the equation (4.4) above is the distribution of utility conditional on the offer being 

acceptable (the utility is above its reservation level Ui) and tt; is the probability that the offer 

is acceptable. Taking the search cost into account, we obtain the following expression for the 

EUi -  (Ui - c)7Tj + (Ui -  2c)7Tj(l - 7Tj) + (Ui - 3c)7Tj(l - TTj)2 + ... = Ui - c/vT; (4.6) 

This problem has a reservation utility property - each individual maximizes her expected 

utility given above by accepting the first job that provides utility higher than the reservation 

utility level. The optimal reservation utility can be found by solving the following first order 

condition:9 

This first-order condition implicitly defines the optimal decision rule as a function of the 

parameters of the model: 

It is possible to demonstrate some important points using simulations of this simple model. 

Recal l  that  of  the main object ives  of  this  research is  to  show that  joint  est imation of  6  and p  

is necessary to be able to draw meaningful conclusions about either of them. Figures 4.1 and 

4.2 show the different projections of the plot of the simulated proportions of people with EPHI 

8Please refer to the appendix for details. 
9Please, see appendix for details. 

expected utility of the search process:8 

(4.7) 

Ui —/(Ci) &ii Mlii (4.8) 

4.3 Simulation 
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offer (P) given different values of 6 and p. The plot depicts 5000 points, each of which was 

obtained by generating data according to the search model described in the previous section. 

The parameters were set at the following levels: 

Hi = 6 

/X2 = 8 

p~UNIF{0.5,0.8) 

6 ~ UNIF{ 1,3) 

c = 0.3 

All but two parameters of interest were fixed during simulations. The intention was to 

Obtetved proportion *#h EPHI offer 

Figure 4.1 The trade-off between preferences and choice 

show that observationally identical data can be generated with different combinations of 6 and 

p. This illustrates the idea that some people may be observed with insurance offer because 

they always get offers (high p) even though they do not care about it (low 6), while others 



www.manaraa.com

67 

Obtowd proportion *1» EPHI offer 

% .. -
p 0.8"" »** 

Figure 4.2 The trade-off between preferences and choice 

are observed with insurance offer despite their low probability of getting one p but because 

they wanted it (high 8) and searched for a while. All individuals are assumed to be from 

the same population - they have exactly the same 8 and p, they differ in the amount of luck 

governed by stochastic process generating job offers. Exactly because of this stochastic nature 

of the generated data it is impossible to define an analytic relationship between P and (8, p). 

Obviously, as sample size rises, the observed proportion P will converge in probability to EP. 

It is possible to think of defining the mapping from (8, p) to EP with level curves that would 

contain pairs (8, p) resulting in the same EP. Intuitively, it means that it may inappropriate to 

draw inferences about p, without explicitly accounting for 8. Conversely, we probably cannot 

say much about 8, if we do not explicitly account for p. 
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4.4 Homogeneous Population Case 

4.4.1 Maximum-Likelihood Estimation 

Given that the individual i  acted optimally (the utility level of the accepted job is above 

U*, the probability that utility is above the reservation level is: 

Pr [Ut >  V*} = + _L=e-3(*-fW(l - P i))dUi 
Jul V27T V27T 

= Pi Pr[N(6i  + /xii ,  1)  > U*] + (1 -  Pi) Pi[N(n2i,  1)  > U*] 

= pi Pr[7V(0,1) > U* - (6i  + nu)} + (1 - pi)  Pr[7V(0, 1) > U* - //2i] 

= pi Pr[7V(0,1) < {8i  + f in) ~ U*] + (1 -  Pi) Pr[iV(0,1) < f i2 i  - U*] 

= PiF{{&i + fin) -  U*) + (1 -  P i )F(n2i -  U*),  

where N(/i ,  a2)  is a normal random variable with the mean /i and variance a2 ,  and F(.)  is the 

standard normal cdf. 

The joint distribution of the (logw,, Ii)  is given by (conditional on pu, (i2i ,Pi ,  8i ,U*):  

<j>(\ogWi,Ii \Ui > U*) = 0(log w l >I i \log Wi > U* -  BJi)  

_  (j){ \ogwuIi)  =  ( j){ \ogWi,Ii)  

Pr [log toj > U* - dJi]  Pr[f7j > U*\ 
-l_e-i(loSu,t-C li)2 

A f '  l f / i  l 0 g  W i > U i  6 i  

=*-, if Ii = 0, log Wi > U* 
PiF( )+{\-P i)F( t i2 i -U' iy 

0, otherwise. 

Therefore, conditional on the parameters, the joint distribution of log Wi and Ii is the mixture of 

two truncated normals. Denoting the log-wage observations for those people with EPHI offer 

by log ton, i = l,rii and the log-wage observations of those without EPHI offer by log W2j, 
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j  — 1,712,the joint likelihood is given by: 

L (log tolllogU>ini, log 1U21logU>2n2,  h ,  -, Infti, V l i ,  V 2 i , P i , U * )  =  

= (27r)-("1+n2)/2 JJ P i  x 
((% + mi) - cO + (i - - ̂ ) 

1  -P i  x 
+m,) -  +a w- - [/;) 

X e-1/2E"il(lo6toli-^li)2+E"£l(1°gu'2j-/'2j)2] x 

X JJ/[logwH > U *  -  6 i ]  X £[ /[log w 2 j  >  U * ]  
i = 1  

where I[exp] is an indicator function equal to 1 if the expression in brackets is true and equal 

to 0 otherwise. 

Let me start by simplifying the model by assuming that the parameters of the model 

{di,pi,nii,iX2i,Ci} are constant across population. The likelihood then becomes: 

L (log w n , . . . ,  log W l n i ,  log 11)21, • • •, log W2n2 , h ,  . . . , In \0 , V l , V 2 , P ,U*)  =  

= (27r)_(ni+n2)/2e_1/'2^=^logl0li_'J1^+^=^logt"2-''_M2^2^ni (1 - p)"2 x 

x ( p F ( ( 0  +  Mi) -  U * )  +  (1 -  p ) F { » 2  -  [/*))-(»!+"2)/[logu;i(1) >V*_ 6]/[iogu,2(1) > U %  

where logiui(i) and log w 2 { \ )  are the first order statistics for two groups of observations (with 

and without an EPHI offer respectively). 

It is the standard procedure in search models to estimate the reservation value along with 

the parameters of the wage-EPHI distribution and then use them to get the estimate of search 

cost (which doesn't appear in likelihood but can be computed using the first-order condition). 

Consider the continuous part of the likelihood - everything except the last two terms. This 

part of the likelihood is increasing function of U*, therefore the Maximum Likelihood estimator 

of reservation utility is: 

(U*)MLE = min{logto1(1) + 6>,logw2(i)}-
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Also, the continuous part of the likelihood is decreasing in 6. Now, if (U*)MLE = log w2(i) < 

log+9, then we can increase likelihood by decreasing 8. If, on the other hand, {U*)MLE = 

logwm) +6 < log w2(i), then by decreasing 6 (increase in log-likelihood with the speed propor­

tional to= ("i+n2)pF((g+wyi^1Ip)it(w.l7*))wealsodecrease {U*)MLE (decrease 

in log-likelihood with the speed proportional to = (rci+n2)^(
(^ 

Therefore, by increasing 6 we will increase the likelihood. It follows then that: 

{U )MLE = logtoi(i) + 0M LE = log 102(1) 

The first-order conditions with respect to other three parameters are: 

aiogi(.) = (".+•* )p/((m+«)-tT) 
=3TT - 0 

dfJ*l 2 j=1 pF((d + n\) — U ) + (1 — p)F{n2 — U ) 

dlog-E(-) = Mi n2  .  1- (n1 + n2)(F((e + ̂ 1)-U*)-F(fx2-U*)) 

d p  P  1 - P 1  p F { { &  +  f i x )  -  1 7 * )  +  ( 1  -  p ) F ( f i 2  -  Û * )  

With some transformations we arrive at the following system of the Maximum Likelihood 

estimators (some are indirect expressions):11 

(»i+ »:)#( W + Ô(ZH) log W\ = (/il) + 

log ii)2 = (m) + 

m(pf((m) + @ - ([/*)) + (i - - ([/*))) 

(ni + ri2)(l - P)/((M2) — {U )) 

((m) + 0 -  )) + (i -  ̂ ((^2) -  ([/))) 

m ( l - p ) ~ n 2 p  = (m + n2)(F(Qj-fl - (17*)) - F(W - (T))) 

m ^ pF(Q + 0- (Û*)) + (1 -PMW - (Û*)) 

(JJ*) - log U>2(1) 

6 = log ^2(1) - logWl(l), 

10where /(.) is the standard normal pdf. 
UMLE subscript is suppressed in this equation. 
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where log w\ and log w2 are means of the observed log-wages for both subpopulations (with 

and without an EPHI offer). The Maximum Likelihood estimator of search cost follows directly 

from first-order conditions: 

___ fOO ^  _ 
CM LE =  /— ( u  -  ( U  )M L E)F(Ui\ (FL1)M L E , (FL2)M L E ,6MLE,PMLE)dUi 

)MLE 

4.4.2 Monte-Carlo Experiment 

I have performed simulations of this simplified homogeneous search model. All the parame­

ters in the model were randomly drawn from a distributions specified below for each run of the 

program. In each iteration, the data were generated according to the search model outlined 

above. The data consist of two vectors - observed wages and dichotomous EPHI offer state 

variable. The distributions for parameters were: 

M i  ~  U N I F { 5 , 8 )  

M2 ~  U N I F ( 7,10) 

p ~ U N I F { 0 . 5 , 0 . 8 )  

8  ~  U N I F ( 1 , 3 )  

c = 0.3. 

The simulations were run 100 times. Each iteration 10000 data points (individuals) were 

created. The results are displayed in Figure 1. The horizontal axis on each subplot indicates 

the true parameter selected at the beginning of each trial by pseudo-random number generator. 

The vertical axis indicates the estimate of the parameter. It has to be noted that in some cases, 

quite unusual combinations of parameters were drawn, leading to unexpected distribution of 

data. In some of these cases, the search algorithm needed to solve the system of first-order 

conditions failed to converge leading to estimates that were clearly quite far from the true 

parameter. Yet, the estimation of both means of wage processes as well as preference parameter 

6 seems to be quite robust. The most sensitive parameter appears to be p, which wasn't 
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estimated accurately in some cases. This simplified homogeneous population version of the 
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Figure 4.3 MLE, Homogeneous Population 

model has one major drawback - it is too simple. It is unrealistic to assume that everyone in 

the sample draws values from exactly the same distribution. 

4.5 Directions for Future Research 

In order to model individual heterogeneity in a realistic way, all the main parameters of 

the model {{Qi,Pi, nu, Cj}) have to be allowed to depend on the observable data. Observed 

heterogeneity is often modeled in the search models via splitting the sample into finite number 

of "homogeneous" groups. It is done by identifying the (limited) number of characteristics 

that are observed by econometrician and creating groups for which these characteristics are 

the same. All continuous variables have to be discretized into intervals with the assumption 

that inside the interval differences in the value of a characteristic do not cause heterogeneous 

behavior. In my opinion, the assumption that all heterogeneity can be accounted for by a few 
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observed variables as well as discretization may well be too restrictive.12 

So far I have ignored any potential unobserved heterogeneity. Some people may be more 

productive and be able to get better jobs in all senses - health insurance and higher wages. To 

incorporate unobserved heterogeneity, some or all parameters in the model have to be specified 

as functions of observables and random errors. The problem is that this makes the standard 

estimation procedure impossible to use because the reservation utility has to be estimated first. 

If individuals are different based on some unobserved factors, the reservation utility levels are 

going to be different for everyone in the sample. This means that the order statistics used to 

identify the preference parameter 0 and the reservation utility are no longer useful. 

It is a well-known fact that the structural search models are extremely sensitive to the 

measurement error in observed wages. The reason is that order-statistics are used in estimators 

of reservation utility levels. Order statistics are known to be sensitive to the measurement error. 

Inspection of the data leads me to believe that measurement error might be an important issue 

in this model. It is, therefore, important to consider the issue of measurement error and to try 

to incorporate it in the estimation procedure. 

This paper should serve as a staring point for research aiming to empirically separate the 

effects of preferences for and availability of choice of the employer-provided health coverage. 

I show that these two factors can interact in complex ways to produce similar observable 

outcomes. I also show that there are some problems related to the estimation of the realistic 

version of my search model, which may require some new solutions. 

12This is partly based on several attempts to estimate the model for a few population groups with similar 
demographic characteristics. The estimates in all cases were unrealistic and they are not reported here. In 
particular, the estimated search cost were very high for almost all groups. This means that effectively there was 
almost no search. For some subpopulations the estimates of the preference were negative. 
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CHAPTER 5. GENERAL CONCLUSION 

In this dissertation, I explore the role played by private information in different markets. 

There are two main classes of imperfect information models that provide testable predictions 

for empirical work - adverse selection and moral hazard. Both adverse selection and moral 

hazard predict that there should be positive correlation between some choice variable (insurance 

coverage) and some outcome variable (risk). Although the prediction of both of these models 

is the same, the mechanisms that generate it are different. In adverse selection models, agents 

know their risk and choose insurance coverage. In moral hazard models, agents change their 

own risk depending on the coverage they have. 

The main contribution in the first essay is to consider a conceptually different type of private 

information - risk aversion. Recent theoretical advances demonstrate that the lack of positive 

correlation between coverage and risk does not signal the absence of informational asymme­

tries and is consistent with more complex models with unobserved risk-aversion. I extend the 

empirical literature by testing for selection on more than one type of latent information - risk 

type and risk-aversion type. I separate the incentive effect from effects of selection on multiple 

types of unobservables by specifying a hybrid endogenous treatment model with explicit mod­

eling of indicators of latent attitudes toward risk-taking behavior. I use data from the 2000 

Medical Expenditure Panel Survey (MEPS), which contains a set of attitudinal variables nec­

essary to estimate the model. Although the overall selection effect appears to be insignificant, 

the results indicate that individuals do, in fact, possess private information which increases 

their propensity to be insured and to utilize health care. This suggests that lack of conditional 

correlation between insurance coverage and health care utilization results from informational 

asymmetries of multiple types inducing selection in opposite directions. In addition, I find 
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strong evidence of moral hazard in outpatient and office-based health care utilization but not 

in inpatient or emergency room utilization. 

In the second essay, I consider financing of business start-ups. This is the first paper to ex­

amine the relationship between capital structure and performance of business start-ups in the 

presence of imperfect information. Capital structure and performance of business start-ups are 

estimated jointly using a unique data set collected by the National Federation of Independent 

Business (NFIB) Foundation. The results suggest that debt does not have a significant incen­

tive effect on performance in business start-ups after controlling for self-selection. In contrast, 

both selection and incentive effects are present in the case of outside equity indicating that 

outside investors are able to both overcome informational opaqueness of business start-ups and 

provide better incentives for performance. 

The third essay examines the role of unobserved preferences for health insurance in the 

context of job search. The majority of Americans get health insurance through their employers. 

One of the potential concerns related to employer-provided health insurance is whether some 

categories of workers (typically with low educational attainment) actually have access to jobs 

with health insurance offers. This challenges an assumption imposed in some of the previous 

literature that workers have equal access to both jobs with and without health insurance offers 

and sort strategically according to their preferences. A worker can be uninsured either because 

of lack of choice or because of preferences for a job without a health insurance offer. To be able 

to separate the effect of lack of choice from the effect of preferences, I develop a structural job 

search model with two job characteristics - the offered wage and the availability of insurance. 

I simulate the model to demonstrate the interaction between preferences and availability of 

choice. 
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APPENDIX A. Posterior distributions for chapter 2 

Likelihood of the Latent Data 

Conditional on the parameters of the model, the Hkelihood can be expressed as 

Xl/'M = (27r)-4P|7n @ 2|4 exp® - X#) 

oc (|f„|3|zn-i exp(-l(%* - X/3)'(A <8 - %/3)) 

oc|E| 2exp(-i^e^S hi) 
i=i 

oc |2|-S exp (-1 ̂  (yf - (A.l) 
1=1 

Posterior of /? 

p(/%*, E) oc exp (yf - + (^ - - %%,)]) 
i=1 

oc exp (-ig 
i=l 

+ - 2/?l^po + 

oc exp(-l[^(Y2%fZ-:%, 4-
i—1 i=l 

oc exp (-^[/3'Vg"1/? - 2/5'V^V/3i]) 

oc exp{-^[P'VpiP - 20'Vpi V01 + v'piVpi V01 - M/3i^3iV/3ii) 

oc exp (--[(/3 - fipiYVpi^ - npi)\) (A.2) 
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Therefore, 

p  (/%*, E) = N  ( n p i ,  V 0 { )  

1=1 

n 

m = + vinm) 
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APPENDIX B. Posterior distributions and posterior output for chapter 3 

Likelihood 

Conditional on the parameters of the model, the likelihood can be expressed as 

p{y\(3,n) = (2n)~^\In<S)H~1\~^ exp(-^(y - X/3)'(In ® H'1)'1 (y - X/3)) 

oc (l/nfia-fri exp (-1(1, - ® #)(;/ - %/))) 

oc \H\% exp (~J2r)iH'ni) 
i=i 

oc 1^1? exp (-1 ̂  (M - - Xi/3)) 
i=i 

oc exp (-^r[]C (w - - ̂ )]) (B.l) 
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Posterior distributions 

Posterior of /? 

Since we specify the independent priors for /? and J/-1, the conditional posterior for /3 is 

proportional to 

P (lldata, # _1) oc exp (-^[^ (yi - Xi(3)'H{yi - X^) + (/? - /30)'Vr
0~1(/3 - /30)]) 

i=i 

1 n 

oc exp (--g - 2/^X^ + 
i=l 

4- Y -

oc exp + %,-!&)]) 
i=1 i=l 

y cx exp {-\\0Vx l(3 - 2/3% lpx\) 

oc exp 

ocexp(-l[(^-/3iy^(/3-M) (B.2) 

The conditional posterior distribution of /? is also normal 

p (0\data, H) = N (/?i. Vi) 

yi = (52x'iHXi+v1)-1 

i=l 
n 

A  =  V i X ' i H y i  +  V ^ h )  ( B . 3 )  
i=1 



www.manaraa.com

80 

-l Posterior of H 

The first case is continuous Independence of prior distributions leads to the following 

conditional posterior distribution of H 

p ( H )  oc \H\z exp(-^r[]T] {yi - Xtf)'H{yi - Xi(3)])x 
i=1 

\H\^ exp(-hr(H^H)) 
2 

oc \H\"nz^zl exp (Vi ~ - Xifi'H + H^H}) (B.4) 
i=1 

Therefore, the conditional posterior distribution of H is also Wishart 

p{H\data,(3) — W (yx,H\) 

vi = vo + n 

Hi = ( - Xi/3)(yi - XiP)' + Hô1 (B.5) 
v=l 

The other case that we will consider is of a binary dependent variable Yi. The conditional 

posterior of p is given by 

1 n j 
P (p\data , fi ,  h) oc exp (--V (t&V - 2r)uT)2ihp)) exp (--—(f? -  2ppo)) 

2 U. 2VP° 

1 71 71 

oc exp(--(/(^ + ~ 2p(p0vfl + 
i~ 1 2=1 

oc exp(-—^-(p- p i f )  (B.6) 
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Thus, the conditional posterior of p is normal 

P (p\data, (3,h) = N {pi, Vpi) 

i=1 
n 

Pi = Vpi (poV^1 + h^T %%) (B.7) 
1=1 

The conditional posterior of h is given by 

v -2 hv 1 n 

p (h\data, (3, p) oc /i~V~ exp exp (--^ (77^ (l + hp2) - 2r}ur]2ihp + 7?|/i)) 
i=i 

tx exp (-M^ + ^53 (^1*^ ~ 27?li7?2iP + T?2i)D 
i=l 

oc ̂  exp(_%W, M, + E?., (mip-TO)2
1) 

2 ho(i>o + 7i ) (z^o + 71) 

oc/i"V eXp(-^) (B.8) 

Thus, the conditional posterior of h is given by 

V (h\data, f3,p) = G (i/i, hi) 

1/ 1 — 1 /0 +  n  

t- = 'M^)+g=faTn7i>2''1 <B9> 

Posterior Output 
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Table B.l Results 

variable posterior mean, 
equationl 

posterior st.dev. 
equationl 

posterior mean, 
equation2 

posterior st.dev. 
equation2 

intercept 
agel 
totjobs 
bsll 
bs21 
bs61 
race 
outjob4 
unemp-change 
est-change 
sex 
movedl 
partners 
managexp 
firequit 
diffprod 
parenown 
educlev 
opercont 
capinv 
oddsyr 
agef 
lgl-forml-2 
lgLforml-3 
loans 
homestead 
h-unlimited 
HH 
debt-2_assets 
start1 

-0.7091 
0.0102 
-0.0232 
-0.0041 
0.0026 
-0.0051 
-0.3578 
0.1334 
-0.0762 
0.3950 
-0.1935 
-0.0021 
0.0303 
-0.0521 
-0.0563 
-0.2638 
0.0782 
0.0161 
0.0744 
0.0575 
0.0861 
0.0088 
-0.0684 
-0.0762 
-0.0535 

0.2332 
0.0031 
0.0061 
0.0016 
0.0014 
0.0023 
0.1080 
0.0737 
0.0232 
0.3185 
0.0681 
0.0697 
0.0377 
0.0689 
0.0725 
0.0582 
0.0552 
0.0169 
0.0249 
0.0181 
0.0129 
0.0041 
0.0909 
0.0662 
0.1821 

0.0613 
-0.0063 
-0.0066 

-0.0000 
-0.0000 
0.0003 
-0.0610 
-0.0276 

0.1375 
-0.1336 
-0.0283 
-0.0575 
-0.0620 
-0.0171 
-0.0509 
-0.0028 
0.0095 
0.1317 
0.0015 
0.0013 
-0.0544 
-0.1980 

-0.0025 
0.2847 
-0.0001 

0.0147 
-0.0479 

0.1299 
0.0016 

0.0038 
0.0009 
0.0007 
0.0013 
0.0636 
0.0401 

0.0371 
0.0369 
0.0197 
0.0357 
0.0398 
0.0311 
0.0290 
0.0087 
0.0130 
0.0097 
0.0071 
0.0021 
0.0491 
0.0362 

0.0012 

0.0992 
0.0000 
0.1505 
0.0313 

covariance 0.0025 0.0529 
Notes: The sample size is 2880. The dependent variable in equation 1 is survive and the 
dependent variable in the second equation is loans. The last line is the posterior mean and 

standard error of covariance parameter 0*12. 
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Table B.2 Results 

variable posterior mean, posterior st.dev. posterior mean, posterior st.dev. 
equationl equationl equation2 equation2 

intercept -0.6684 0.2242 -1.7095 0.3640 
agel 0.0102 0.0031 -0.0027 0.0043 
totjobs -0.0221 0.0061 0.0111 0.0085 
bsll -0.0044 0.0016 -0.0046 0.0025 
bs21 0.0025 0.0013 -0.0021 0.0019 
bs61 -0.0050 0.0023 0.0022 0.0032 
race -0.3399 0.1077 0.2159 0.1525 
outjob4 0.1331 0.0735 -0.0015 0.1121 
unemp-change -0.0748 0.0232 
est-change 0.3929 0.3126 
sex -0.2044 0.0681 -0.1756 0.1123 
movedl 0.0009 0.0693 0.0835 0.0927 
partners 0.0638 0.0389 0.2987 0.0418 
managexp -0.0501 0.0692 0.0404 0.1013 
firequit -0.0619 0.0722 -0.1196 0.1147 
diflprod -0.2795 0.0587 -0.2522 0.0868 
parenown 0.0673 0.0558 -0.1561 0.0784 
educlev 0.0170 0.0167 0.0100 0.0228 
opercont 0.0676 0.0249 -0.0820 0.0356 
capinv 0.0633 0.0180 0.1032 0.0248 
oddsyr 0.0836 0.0128 -0.0228 0.0190 
agef 0.0078 0.0041 -0.0077 0.0058 
lgLforml-2 -0.0469 0.0906 0.4040 0.1235 
lgl-forml.3 -0.0439 0.0687 0.4347 0.0947 
invest -0.9568 0.3560 
homestead -0.0012 0.0031 
h-unlimited 0.1588 0.2516 
HH -0.0000 0.0001 
debt.2 .assets 0.2765 0.3842 
start 1 0.1606 0.0854 
covariance 0.2946 0.1188 

Notes: The sample size is 2880. The dependent variable is equation 1 is survive and the 

dependent variable in the second equation is invest. The last hne is the posterior mean and 
standard error of covariance parameter o\2. 
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Table B.3 Results 

variable posterior mean, 
equationl 

posterior st.dev. 
equationl 

posterior mean, 
equation2 

posterior st.dev. 
equation2 

intercept -0.7057 0.2480 0.1644 0.1187 
agel 0.0101 0.0032 -0.0055 0.0015 
tot jobs -0.0233 0.0061 -0.0036 0.0034 
bsll -0.0041 0.0016 -0.0008 0.0008 
bs21 0.0026 0.0013 -0.0003 0.0006 
bs61 -0.0051 0.0023 0.0005 0.0011 
race -0.3570 0.1084 -0.0202 0.0569 
outjob4 0.1325 0.0738 -0.0250 0.0367 
unemp_change -0.0750 0.0233 
est-change 0.4023 0.3172 
sex -0.1914 0.0705 0.0997 0.0339 
moved 1 -0.0052 0.0717 -0.1128 0.0332 
partners 0.0326 0.0382 0.0470 0.0173 
managexp -0.0534 0.0692 -0.0467 0.0325 
firequit -0.0585 0.0732 -0.0720 0.0361 
diffprod -0.2652 0.0587 -0.0442 0.0282 
parenown 0.0759 0.0570 -0.0757 0.0263 
educlev 0.0159 0.0169 -0.0019 0.0078 
opercont 0.0742 0.0246 -0.0058 0.0118 
capinv 0.0604 0.0252 0.1277 0.0088 
oddsyr 0.0858 0.0129 -0.0020 0.0065 
agef 0.0088 0.0041 -0.0003 0.0019 
lgLforml-2 -0.0673 0.0902 0.0057 0.0438 
lgl-forml.3 -0.0778 0.0693 -0.1125 0.0322 
outside -0.0537 0.2724 
homestead -0.0023 0.0011 
h-unlimited 0.2773 0.0891 
HH -0.0000 0.0000 
debt-2_assets 0.0459 0.1370 
start1 -0.0224 0.0286 
covariance 0.0111 0.0698 

Notes: The sample size is 2880. The dependent variable is equation 1 

dependent variable in the second equation is outside. The last line is the 

standard error of covariance parameter au-

is survive and the 
posterior mean and 
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Table B.4 Results 

variable posterior mean, posterior st.dev. posterior mean, posterior st.dev. 
equationl equationl equation2 equation2 

intercept -8.1079 1.7917 -0.1069 0.1842 
agel 0.0553 0.0265 -0.0035 0.0023 
totjobs -0.1866 0.0737 -0.0116 0.0059 
bsll -0.0205 0.0153 -0.0007 0.0012 
bs21 -0.0013 0.0122 0.0008 0.0010 
bs61 -0.0294 0.0206 0.0012 0.0017 
race -2.3178 1.0472 -0.0141 0.0843 
outjob4 0.1296 0.6645 0.0151 0.0551 
unemp-change -0.3126 0.2158 
est_change 1.5374 2.0836 
sex -1.4436 0.6588 0.1488 0.0528 
movedl -0.7656 0.6180 -0.1244 0.0526 
partners 0.6354 0.3203 -0.0193 0.0279 
managexp 0.2031 0.6132 -0.1060 0.0499 
firequit -0.1470 0.6529 -0.0434 0.0566 
diffprod -1.9227 0.5230 0.0303 0.0435 
parenown 0.1483 0.4990 -0.0694 0.0415 
educlev 0.0607 0.1402 -0.0022 0.0121 
opercont 0.3545 0.2182 0.0055 0.0183 
capinv 0.2027 0.1742 0.1270 0.0139 
oddsyr 0.4391 0.1227 0.0084 0.0103 
agef 0.0415 0.0358 0.0022 0.0031 
lgl-forml-2 -0.8413 0.7984 -0.1198 0.0691 
lgl-forml.3 -0.1030 0.6007 -0.2309 0.0499 
loans -0.0710 1.2862 
homestead -0.0021 0.0018 
h_unlimited 0.2142 0.1420 
HH -0.0001 0.0000 
debt_2_assets 0.2011 0.2115 
start1 -0.0615 0.0443 
covariance 0.2876 0.3531 

Notes: The sample size is 1522. The dependent variable is equation 1 is changemp and the 
dependent variable in the second equation is loans. The last line is the posterior mean and 

standard error of covariance parameter o\i. 
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Table B.5 Results 

variable posterior mean, posterior st.dev. posterior mean, posterior st.dev. 
equationl equationl equation2 equation2 

intercept -8.4380 1.7229 -2.3603 0.6071 
agel 0.0573 0.0255 -0.0038 0.0071 
totjobs -0.1907 0.0686 0.0224 0.0153 
bsll -0.0184 0.0149 -0.0039 0.0038 
bs21 0.0014 0.0122 -0.0017 0.0032 
bs61 -0.0319 0.0204 0.0045 0.0048 
race -2.0905 0.9958 0.0940 0.2429 
outjob4 0.1027 0.6453 -0.1023 0.1666 
unemp-change -0.3193 0.2018 
est-change 1.4811 2.0158 
sex -1.2493 0.6244 -0.3384 0.1796 
movedl -0.8581 0.6192 0.2008 0.1486 
partners 0.2490 0.3185 0.3205 0.0737 
managexp 0.2164 0.6186 0.0777 0.1654 
firequit -0.2236 0.6606 -0.1525 0.1944 
diffprod -1.6375 0.5150 -0.1466 0.1347 
parenown 0.2832 0.4795 -0.1931 0.1294 
educlev 0.0740 0.1405 0.0059 0.0375 
opercont 0.4045 0.2115 -0.1082 0.0556 
capinv 0.1420 0.1548 0.1010 0.0404 
oddsyr 0.4235 0.1202 -0.0242 0.0296 
agef 0.0482 0.0369 0.0071 0.0094 
lglJorml.2 -1.1488 0.8111 0.7495 0.1978 
lgl_forml_3 -0.2851 0.5761 0.4652 0.1529 
invest 11.2706 1.7684 
homestead 0.0015 0.0051 
h_unlimited -0.0915 0.4155 
HH -0.0001 0.0001 
debt-2-assets 0.8023 0.5930 
start 1 0.2989 0.1372 
covariance -7.4793 1.0855 

Notes: The sample size is 1522. T îe dependent variab e is equation 1 is changemp and the 
dependent variable in the second equation is invest. The last line is the posterior mean and 
standard error of covariance parameter a\2-
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Table B.6 Results 

variable posterior mean, posterior st.dev. posterior mean, posterior st.dev. 
equationl equationl equation2 equation2 

intercept -7.9607 1.8010 0.0151 0.1656 
agel 0.0529 0.0264 -0.0041 0.0021 
totjobs -0.1831 0.0726 -0.0036 0.0050 
bsll -0.0211 0.0152 -0.0009 0.0011 
bs21 -0.0010 0.0122 0.0004 0.0009 
bs61 -0.0278 0.0209 0.0018 0.0015 
race -2.3629 1.0375 -0.0252 0.0749 
outjob4 0.1441 0.6425 0.0111 0.0503 
unemp-change -0.3053 0.2170 
est-change 1.3930 2.1640 
sex -1.4079 0.6419 0.0936 0.0469 
movedl -0.7742 0.6102 -0.0775 0.0478 
partners 0.6624 0.3176 0.0562 0.0245 
managexp 0.1782 0.6318 -0.0903 0.0462 
firequit -0.1611 0.6653 -0.0507 0.0499 
diffprod -1.9113 0.5297 0.0003 0.0392 
parenown 0.1021 0.4986 -0.0973 0.0372 
educlev 0.0607 0.1417 -0.0044 0.0108 
opercont 0.3547 0.2152 -0.0124 0.0166 
capinv 0.2385 0.1802 0.1217 0.0124 
oddsyr 0.4415 0.1255 0.0030 0.0091 
agef 0.0435 0.0363 0.0010 0.0027 
lgLforml-2 -0.8155 0.8067 -0.0064 0.0618 
lglJorml-3 -0.1363 0.5801 -0.1463 0.0452 
outside -0.6937 1.3661 
homestead -0.0022 0.0016 
h-unlimited 0.2249 0.1259 
HH -0.0001 0.0000 
debt-2_assets 0.3617 0.1923 
start1 -0.0159 0.0397 
covariance 0.3154 0.3467 

Notes: The sample size is 1522. The dependent variable is equation 

dependent variable in the second equation is outside. The last line is 

standard error of covariance parameter a 12-

1 is changemp and the 
the posterior mean and 
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Table B.7 Results 

variable posterior mean, posterior st.dev. posterior mean, posterior st.dev. 
equationl equationl equation2 equation^ 

intercept -0.9181 1.3887 0.0596 0.1318 
agel 0.0006 0.0197 -0.0063 0.0016 
totjobs -0.0990 0.0444 -0.0067 0.0038 
bsll -0.0041 0.0112 0.0000 0.0009 
bs21 0.0035 0.0089 0.0000 0.0007 
bs61 -0.0261 0.0156 0.0003 0.0013 
race -1.9278 0.7678 -0.0605 0.0639 
outjob4 0.9418 0.4967 -0.0281 0.0403 
unemp.change -0.2487 0.1565 
est-change 1.1461 1.7195 
sex -0.8855 0.4791 0.1376 0.0377 
moved 1 -0.2479 0.4685 -0.1346 0.0374 
partners 0.2916 0.2463 -0.0283 0.0200 
managexp -0.1574 0.4609 -0.0583 0.0357 
firequit 0.1436 0.4926 -0.0615 0.0397 
diffprod -1.1940 0.3871 -0.0175 0.0314 
parenown 0.2724 0.3652 -0.0512 0.0293 
educlev -0.1871 0.1066 -0.0029 0.0087 
opercont 0.2733 0.1618 0.0096 0.0131 
capinv 0.1917 0.1319 0.1325 0.0099 
oddsyr 0.3782 0.0889 0.0014 0.0073 
agef 0.0238 0.0270 0.0013 0.0022 
lgl-forml-2 -0.3936 0.6005 -0.0541 0.0494 
lgl_forml_3 -0.1912 0.4447 -0.1993 0.0355 
loans 0.6295 1.0630 
homestead -0.0025 0.0012 
h-unlimited 0.2834 0.0977 
HH -0.0001 0.0000 
debt.2-assets 0.0147 0.1526 
start1 -0.0484 0.0317 
covariance 0.0490 0.2907 

Notes: The sample size is 2880. The dependent variable is equation 1 is changemp and the 

dependent variable in the second equation is loans. The last line is the posterior mean and 

standard error of covariance parameter o\i. 
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Table B.8 Results 

variable posterior mean, posterior st.dev. posterior mean, posterior st.dev. 
equationl equationl equation2 equation^ 

intercept -1.2901 1.3507 -1.6299 0.3198 
agel -0.0011 0.0195 -0.0009 0.0040 
totjobs -0.1038 0.0432 0.0059 0.0089 
bsll 0.0040 0.0108 -0.0054 0.0022 
bs21 0.0053 0.0087 0.0000 0.0018 
bs61 -0.0229 0.0153 0.0017 0.0029 
race -2.0527 0.7346 0.3721 0.1330 
outjob4 0.8599 0.4839 -0.0733 0.0974 
unemp_change -0.2735 0.1385 
est-change 0.9565 1.5779 
sex -0.6211 0.4600 -0.1844 0.1012 
movedl -0.3381 0.4424 0.0969 0.0856 
partners -0.2905 0.2415 0.2351 0.0400 
managexp -0.1658 0.4502 0.0494 0.0935 
firequit 0.2015 0.4806 -0.1522 0.1070 
diffprod -0.7545 0.3884 -0.1659 0.0797 
parenown 0.4505 0.3576 -0.1082 0.0720 
educlev -0.1810 0.1047 0.0268 0.0212 
opercont 0.3470 0.1597 -0.0659 0.0327 
capinv 0.0854 0.1136 0.0933 0.0225 
oddsyr 0.3768 0.0868 -0.0168 0.0176 
agef 0.0396 0.0265 -0.0063 0.0053 
lgl-forml.2 -0.7237 0.5878 0.3157 0.1114 
lgl_forml-3 -0.7599 0.4308 0.3681 0.0858 
invest 13.3058 1.0685 
homestead 0.0014 0.0026 
h-unlimited -0.0649 0.2083 
HH -0.0001 0.0001 
debt_2_assets -0.0729 0.3282 
start 1 0.1411 0.0703 
covariance -6.7947 0.5946 

Notes: The sample size is 2880. The dependent variab e is equation 1 is changemp and the 
dependent variable in the second equation is invest. The last line is the posterior mean and 
standard error of covariance parameter a\2. 
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Table B.9 Results 

variable posterior mean, 
equationl 

posterior st.dev. 
equationl 

posterior mean, 
equation2 

posterior st.dev. 
equation2 

intercept -0.8730 1.4125 0.1632 0.1208 
agel 0.0003 0.0198 -0.0055 0.0015 
totjobs -0.1001 0.0450 -0.0035 0.0034 
bsll -0.0039 0.0112 -0.0008 0.0008 
bs21 0.0035 0.0088 -0.0003 0.0006 
bs61 -0.0257 0.0155 0.0004 0.0011 
race -1.9387 0.7591 -0.0217 0.0569 
outjob4 0.9316 0.5011 -0.0259 0.0363 
unemp-change -0.2415 0.1560 
est-change 1.0717 1.7403 
sex -0.8692 0.4731 0.0992 0.0341 
movedl -0.2669 0.4584 -0.1130 0.0336 
partners 0.2733 0.2476 0.0470 0.0174 
managexp -0.1663 0.4516 -0.0472 0.0329 
firequit 0.1325 0.4936 -0.0722 0.0363 
diffprod -1.1833 0.3899 -0.0445 0.0282 
parenown 0.2680 0.3640 -0.0762 0.0264 
educlev -0.1856 0.1073 -0.0019 0.0079 
opercont 0.2775 0.1612 -0.0060 0.0120 
capinv 0.2028 0.1377 0.1284 0.0089 
oddsyr 0.3801 0.0895 -0.0021 0.0066 
agef 0.0241 0.0273 -0.0004 0.0020 
lgLforml-2 -0.4030 0.5959 0.0065 0.0441 
lgLforml-3 -0.2381 0.4407 -0.1130 0.0324 
outside 0.3892 1.1236 
homestead -0.0023 0.0011 
h_unlimited 0.2782 0.0889 
HH 0.0000 0.0000 
debt-2-assets 0.0470 0.1369 
startl -0.0226 0.0285 
covariance 0.0303 0.2859 

Notes: The sample size is 2820. The dependent variable is equation 
dependent variable in the second equation is outside. The last line is 

standard error of covariance parameter <712-

1 is changemp and the 
the posterior mean and 
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APPENDIX C. First order conditions for chapter 4 

Expected utility 

The expression of expected utility is derived in the following manner: 

EUi — (Ûi - c)7Ti + (ûi - 2c)7Ti(l - 7Ti) + (Ûi ~ 3c)îTi(l - TTi)2 + ... 

= [ÛiKi + - fl») + Ûiir»(l - TTi)2 + ...] -

— [c7Tj + C7Tj(l — TTi) + C7Tj(l — 7Tj)2 + ...] — 

-[c7Tj(l - TTj) + C7Tj(l - 7Tj)2 + C7Tj(l - 7Tj)3 + ...] -

-[c7Tj(l - TTj)2 + C7Tj(l - 7Tj)3 + C7Tj(l - TTj)4...] - ... 

= Ûm/(1 - (1 - TTi)) ~ C7Tj/(l - (1 - 7Ti)) ~ C7Tj(l - 7T»)/(1 - (1 - TTi)) -

-C7Tj(l - 7Tj)2/(l ~ (1 ~ 7^)) - ... 

= Si - C - C(1 - 7Tj) - C(1 - TTi)2 - ... 

= Ûi - c/(l - (l - ni)) = Ûi- c/n 
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First order condition 

02% _ - c)/ y(%|.W _ 

dUi _ _ dUi 

-ÏWil.) - c) _ 

roo roo 

F^l . ) /  y (^ | .W =  v(Fi | . ) ( /_  ^ (%| . )d%-c)  
J U i  J U i  

roo roo 
* Ui I ip(Ui\.)dUi = ( _ UMUi\.)dUi-c) 

J U i  J U i  
roo roo 

«> /_ Uitp(Ui\.)dUi- _ UMUi\.)dUi = -c 
J U i  J U i  

J
roo 
I (Ui - UiMUiDdUi = c 
Ui ' U i  

The second line above was obtained by using the derivative of the ratio rule and Leibnitz 

rule. 
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